Go's SSA instructions only operate on registers. For example, an add
instruction would read two registers, do the addition and then write
to a register. WebAssembly's instructions, on the other hand, operate
on the stack. The add instruction first pops two values from the stack,
does the addition, then pushes the result to the stack. To fulfill
Go's semantics, one needs to map Go's single add instruction to
4 WebAssembly instructions:
- Push the value of local variable A to the stack
- Push the value of local variable B to the stack
- Do addition
- Write value from stack to local variable C
Now consider that B was set to the constant 42 before the addition:
- Push constant 42 to the stack
- Write value from stack to local variable B
This works, but is inefficient. Instead, the stack is used directly
by inlining instructions if possible. With inlining it becomes:
- Push the value of local variable A to the stack (add)
- Push constant 42 to the stack (constant)
- Do addition (add)
- Write value from stack to local variable C (add)
Note that the two SSA instructions can not be generated sequentially
anymore, because their WebAssembly instructions are interleaved.