runtime: replace GC programs with simpler encoding, faster decoder
Small types record the location of pointers in their memory layout
by using a simple bitmap. In Go 1.4 the bitmap held 4-bit entries,
and in Go 1.5 the bitmap holds 1-bit entries, but in both cases using
a bitmap for a large type containing arrays does not make sense:
if someone refers to the type [1<<28]*byte in a program in such
a way that the type information makes it into the binary, it would be
a waste of space to write a 128 MB (for 4-bit entries) or even 32 MB
(for 1-bit entries) bitmap full of 1s into the binary or even to keep
one in memory during the execution of the program.
For large types containing arrays, it is much more compact to describe
the locations of pointers using a notation that can express repetition
than to lay out a bitmap of pointers. Go 1.4 included such a notation,
called ``GC programs'' but it was complex, required recursion during
decoding, and was generally slow. Dmitriy measured the execution of
these programs writing directly to the heap bitmap as being 7x slower
than copying from a preunrolled 4-bit mask (and frankly that code was
not terribly fast either). For some tests, unrollgcprog1 was seen costing
as much as 3x more than the rest of malloc combined.
This CL introduces a different form for the GC programs. They use a
simple Lempel-Ziv-style encoding of the 1-bit pointer information,
in which the only operations are (1) emit the following n bits
and (2) repeat the last n bits c more times. This encoding can be
generated directly from the Go type information (using repetition
only for arrays or large runs of non-pointer data) and it can be decoded
very efficiently. In particular the decoding requires little state and
no recursion, so that the entire decoding can run without any memory
accesses other than the reads of the encoding and the writes of the
decoded form to the heap bitmap. For recursive types like arrays of
arrays of arrays, the inner instructions are only executed once, not
n times, so that large repetitions run at full speed. (In contrast, large
repetitions in the old programs repeated the individual bit-level layout
of the inner data over and over.) The result is as much as 25x faster
decoding compared to the old form.
Because the old decoder was so slow, Go 1.4 had three (or so) cases
for how to set the heap bitmap bits for an allocation of a given type:
(1) If the type had an even number of words up to 32 words, then
the 4-bit pointer mask for the type fit in no more than 16 bytes;
store the 4-bit pointer mask directly in the binary and copy from it.
(1b) If the type had an odd number of words up to 15 words, then
the 4-bit pointer mask for the type, doubled to end on a byte boundary,
fit in no more than 16 bytes; store that doubled mask directly in the
binary and copy from it.
(2) If the type had an even number of words up to 128 words,
or an odd number of words up to 63 words (again due to doubling),
then the 4-bit pointer mask would fit in a 64-byte unrolled mask.
Store a GC program in the binary, but leave space in the BSS for
the unrolled mask. Execute the GC program to construct the mask the
first time it is needed, and thereafter copy from the mask.
(3) Otherwise, store a GC program and execute it to write directly to
the heap bitmap each time an object of that type is allocated.
(This is the case that was 7x slower than the other two.)
Because the new pointer masks store 1-bit entries instead of 4-bit
entries and because using the decoder no longer carries a significant
overhead, after this CL (that is, for Go 1.5) there are only two cases:
(1) If the type is 128 words or less (no condition about odd or even),
store the 1-bit pointer mask directly in the binary and use it to
initialize the heap bitmap during malloc. (Implemented in CL 9702.)
(2) There is no case 2 anymore.
(3) Otherwise, store a GC program and execute it to write directly to
the heap bitmap each time an object of that type is allocated.
Executing the GC program directly into the heap bitmap (case (3) above)
was disabled for the Go 1.5 dev cycle, both to avoid needing to use
GC programs for typedmemmove and to avoid updating that code as
the heap bitmap format changed. Typedmemmove no longer uses this
type information; as of CL 9886 it uses the heap bitmap directly.
Now that the heap bitmap format is stable, we reintroduce GC programs
and their space savings.
Benchmarks for heapBitsSetType, before this CL vs this CL:
The above compares always using a cached pointer mask (and the
corresponding waste of memory) against using the programs directly.
Some slowdown is expected, in exchange for having a better general algorithm.
The GC programs kick in for SetTypeNode128, SetTypeNode130, SetTypeNode1024,
along with the slice variants of those.
It is possible that the cutoff of 128 words (bits) should be raised
in a followup CL, but even with this low cutoff the GC programs are
faster than Go 1.4's "fast path" non-GC program case.
Benchmarks for heapBitsSetType, Go 1.4 vs this CL:
SetTypeNode124 uses a 124 data + 2 ptr = 126-word allocation.
Both Go 1.4 and this CL are using pointer bitmaps for this case,
so that's an overall 3x speedup for using pointer bitmaps.
SetTypeNode128 uses a 128 data + 2 ptr = 130-word allocation.
Both Go 1.4 and this CL are running the GC program for this case,
so that's an overall 17x speedup when using GC programs (and
I've seen >20x on other systems).
Comparing Go 1.4's SetTypeNode124 (pointer bitmap) against
this CL's SetTypeNode128 (GC program), the slow path in the
code in this CL is 2x faster than the fast path in Go 1.4.
The Go 1 benchmarks are basically unaffected compared to just before this CL.
This CL is a bit larger than I would like, but the compiler, linker, runtime,
and package reflect all need to be in sync about the format of these programs,
so there is no easy way to split this into independent changes (at least
while keeping the build working at each change).