// convert power of two and non power of two bases separately
if b == b&-b {
// shift is base-b digit size in bits
- shift := uint(trailingZeroBits(b)) // shift > 0 because b >= 2
+ shift := trailingZeroBits(b) // shift > 0 because b >= 2
mask := Word(1)<<shift - 1
w := x[0]
nbits := uint(_W) // number of unprocessed bits in w
54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
}
-// trailingZeroBits returns the number of consecutive zero bits on the right
-// side of the given Word.
-// See Knuth, volume 4, section 7.3.1
-func trailingZeroBits(x Word) int {
+// trailingZeroBits returns the number of consecutive least significant zero
+// bits of x.
+func trailingZeroBits(x Word) uint {
// x & -x leaves only the right-most bit set in the word. Let k be the
// index of that bit. Since only a single bit is set, the value is two
// to the power of k. Multiplying by a power of two is equivalent to
// Therefore, if we have a left shifted version of this constant we can
// find by how many bits it was shifted by looking at which six bit
// substring ended up at the top of the word.
+ // (Knuth, volume 4, section 7.3.1)
switch _W {
case 32:
- return int(deBruijn32Lookup[((x&-x)*deBruijn32)>>27])
+ return uint(deBruijn32Lookup[((x&-x)*deBruijn32)>>27])
case 64:
- return int(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58])
+ return uint(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58])
default:
panic("Unknown word size")
}
return 0
}
+// trailingZeroBits returns the number of consecutive least significant zero
+// bits of x.
+func (x nat) trailingZeroBits() uint {
+ if len(x) == 0 {
+ return 0
+ }
+ var i uint
+ for x[i] == 0 {
+ i++
+ }
+ // x[i] != 0
+ return i*_W + trailingZeroBits(x[i])
+}
+
// z = x << s
func (z nat) shl(x nat, s uint) nat {
m := len(x)
return divWVW(q, 0, x, d)
}
-// powersOfTwoDecompose finds q and k with x = q * 1<<k and q is odd, or q and k are 0.
-func (x nat) powersOfTwoDecompose() (q nat, k int) {
- if len(x) == 0 {
- return x, 0
- }
-
- // One of the words must be non-zero by definition,
- // so this loop will terminate with i < len(x), and
- // i is the number of 0 words.
- i := 0
- for x[i] == 0 {
- i++
- }
- n := trailingZeroBits(x[i]) // x[i] != 0
-
- q = make(nat, len(x)-i)
- shrVU(q, x[i:], uint(n))
-
- q = q.norm()
- k = i*_W + n
- return
-}
-
// random creates a random integer in [0..limit), using the space in z if
// possible. n is the bit length of limit.
func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
}
nm1 := nat(nil).sub(n, natOne)
- // 1<<k * q = nm1;
- q, k := nm1.powersOfTwoDecompose()
+ // determine q, k such that nm1 = q << k
+ k := nm1.trailingZeroBits()
+ q := nat(nil).shr(nm1, k)
nm3 := nat(nil).sub(nm1, natTwo)
rand := rand.New(rand.NewSource(int64(n[0])))
if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {
continue
}
- for j := 1; j < k; j++ {
+ for j := uint(1); j < k; j++ {
y = y.mul(y, y)
quotient, y = quotient.div(y, y, n)
if y.cmp(nm1) == 0 {
}
func TestTrailingZeroBits(t *testing.T) {
- var x Word
- x--
- for i := 0; i < _W; i++ {
- if trailingZeroBits(x) != i {
- t.Errorf("Failed at step %d: x: %x got: %d", i, x, trailingZeroBits(x))
+ x := Word(1)
+ for i := uint(0); i <= _W; i++ {
+ n := trailingZeroBits(x)
+ if n != i%_W {
+ t.Errorf("got trailingZeroBits(%#x) = %d; want %d", x, n, i%_W)
}
x <<= 1
}
+
+ y := nat(nil).set(natOne)
+ for i := uint(0); i <= 3*_W; i++ {
+ n := y.trailingZeroBits()
+ if n != i {
+ t.Errorf("got 0x%s.trailingZeroBits() = %d; want %d", y.string(lowercaseDigits[0:16]), n, i)
+ }
+ y = y.shl(y, 1)
+ }
}
var expNNTests = []struct {