return typed(typ, ir.NewTypeAssertExpr(pos, x, nil))
}
-func Binary(pos src.XPos, op ir.Op, x, y ir.Node) ir.Node {
+// transformAdd transforms an addition operation (currently just addition of
+// strings). Equivalent to the "binary operators" case in typecheck.typecheck1.
+func transformAdd(n *ir.BinaryExpr) ir.Node {
+ l := n.X
+ if l.Type().IsString() {
+ var add *ir.AddStringExpr
+ if l.Op() == ir.OADDSTR {
+ add = l.(*ir.AddStringExpr)
+ add.SetPos(n.Pos())
+ } else {
+ add = ir.NewAddStringExpr(n.Pos(), []ir.Node{l})
+ }
+ r := n.Y
+ if r.Op() == ir.OADDSTR {
+ r := r.(*ir.AddStringExpr)
+ add.List.Append(r.List.Take()...)
+ } else {
+ add.List.Append(r)
+ }
+ add.SetType(l.Type())
+ return add
+ }
+ return n
+}
+
+func Binary(pos src.XPos, op ir.Op, typ *types.Type, x, y ir.Node) ir.Node {
switch op {
case ir.OANDAND, ir.OOROR:
return typed(x.Type(), ir.NewLogicalExpr(pos, op, x, y))
case ir.OADD:
- if x.Type().IsString() {
- // TODO(mdempsky): Construct OADDSTR directly.
- return typecheck.Expr(ir.NewBinaryExpr(pos, op, x, y))
+ n := ir.NewBinaryExpr(pos, op, x, y)
+ if x.Type().HasTParam() || y.Type().HasTParam() {
+ // Delay transformAdd() if either arg has a type param,
+ // since it needs to know the exact types to decide whether
+ // to transform OADD to OADDSTR.
+ n.SetType(typ)
+ n.SetTypecheck(3)
+ return n
}
- fallthrough
+ n1 := transformAdd(n)
+ return typed(typ, n1)
default:
return typed(x.Type(), ir.NewBinaryExpr(pos, op, x, y))
}
return n
}
+// transformCompare transforms a compare operation (currently just equals/not
+// equals). Equivalent to the "comparison operators" case in
+// typecheck.typecheck1, including tcArith.
+func transformCompare(n *ir.BinaryExpr) {
+ if (n.Op() == ir.OEQ || n.Op() == ir.ONE) && !types.Identical(n.X.Type(), n.Y.Type()) {
+ // Comparison is okay as long as one side is assignable to the
+ // other. The only allowed case where the conversion is not CONVNOP is
+ // "concrete == interface". In that case, check comparability of
+ // the concrete type. The conversion allocates, so only do it if
+ // the concrete type is huge.
+ l, r := n.X, n.Y
+ lt, rt := l.Type(), r.Type()
+ converted := false
+ if rt.Kind() != types.TBLANK {
+ aop, _ := typecheck.Assignop(lt, rt)
+ if aop != ir.OXXX {
+ types.CalcSize(lt)
+ if rt.IsInterface() == lt.IsInterface() || lt.Width >= 1<<16 {
+ l = ir.NewConvExpr(base.Pos, aop, rt, l)
+ l.SetTypecheck(1)
+ }
+
+ converted = true
+ }
+ }
+
+ if !converted && lt.Kind() != types.TBLANK {
+ aop, _ := typecheck.Assignop(rt, lt)
+ if aop != ir.OXXX {
+ types.CalcSize(rt)
+ if rt.IsInterface() == lt.IsInterface() || rt.Width >= 1<<16 {
+ r = ir.NewConvExpr(base.Pos, aop, lt, r)
+ r.SetTypecheck(1)
+ }
+ }
+ }
+ n.X, n.Y = l, r
+ }
+}
+
func Compare(pos src.XPos, typ *types.Type, op ir.Op, x, y ir.Node) ir.Node {
n := ir.NewBinaryExpr(pos, op, x, y)
- if !types.Identical(x.Type(), y.Type()) {
- // TODO(mdempsky): Handle subtleties of constructing mixed-typed comparisons.
- n = typecheck.Expr(n).(*ir.BinaryExpr)
+ if x.Type().HasTParam() || y.Type().HasTParam() {
+ // Delay transformCompare() if either arg has a type param, since
+ // it needs to know the exact types to decide on any needed conversions.
+ n.SetType(typ)
+ n.SetTypecheck(3)
+ return n
}
+ transformCompare(n)
return typed(typ, n)
}
return typecheck.Expr(n)
}
-func Slice(pos src.XPos, x, low, high, max ir.Node) ir.Node {
+// transformSlice transforms a slice operation. Equivalent to typecheck.tcSlice.
+func transformSlice(n *ir.SliceExpr) {
+ l := n.X
+ if l.Type().IsArray() {
+ addr := typecheck.NodAddr(n.X)
+ addr.SetImplicit(true)
+ typed(types.NewPtr(n.X.Type()), addr)
+ n.X = addr
+ l = addr
+ }
+ t := l.Type()
+ if t.IsString() {
+ n.SetOp(ir.OSLICESTR)
+ } else if t.IsPtr() && t.Elem().IsArray() {
+ if n.Op().IsSlice3() {
+ n.SetOp(ir.OSLICE3ARR)
+ } else {
+ n.SetOp(ir.OSLICEARR)
+ }
+ }
+}
+
+func Slice(pos src.XPos, typ *types.Type, x, low, high, max ir.Node) ir.Node {
op := ir.OSLICE
if max != nil {
op = ir.OSLICE3
}
- // TODO(mdempsky): Avoid typecheck.Expr.
- return typecheck.Expr(ir.NewSliceExpr(pos, op, x, low, high, max))
+ n := ir.NewSliceExpr(pos, op, x, low, high, max)
+ if x.Type().HasTParam() {
+ // transformSlice needs to know if x.Type() is a string or an array or a slice.
+ n.SetType(typ)
+ n.SetTypecheck(3)
+ return n
+ }
+ transformSlice(n)
+ return typed(typ, n)
}
func Unary(pos src.XPos, op ir.Op, x ir.Node) ir.Node {
--- /dev/null
+// run -gcflags=-G=3
+
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Package list provides a doubly linked list of some element type
+// (generic form of the "container/list" package).
+
+package main
+
+import (
+ "fmt"
+ "strconv"
+)
+
+// Element is an element of a linked list.
+type _Element[T any] struct {
+ // Next and previous pointers in the doubly-linked list of elements.
+ // To simplify the implementation, internally a list l is implemented
+ // as a ring, such that &l.root is both the next element of the last
+ // list element (l.Back()) and the previous element of the first list
+ // element (l.Front()).
+ next, prev *_Element[T]
+
+ // The list to which this element belongs.
+ list *_List[T]
+
+ // The value stored with this element.
+ Value T
+}
+
+// Next returns the next list element or nil.
+func (e *_Element[T]) Next() *_Element[T] {
+ if p := e.next; e.list != nil && p != &e.list.root {
+ return p
+ }
+ return nil
+}
+
+// Prev returns the previous list element or nil.
+func (e *_Element[T]) Prev() *_Element[T] {
+ if p := e.prev; e.list != nil && p != &e.list.root {
+ return p
+ }
+ return nil
+}
+
+// _List represents a doubly linked list.
+// The zero value for _List is an empty list ready to use.
+type _List[T any] struct {
+ root _Element[T] // sentinel list element, only &root, root.prev, and root.next are used
+ len int // current list length excluding (this) sentinel element
+}
+
+// Init initializes or clears list l.
+func (l *_List[T]) Init() *_List[T] {
+ l.root.next = &l.root
+ l.root.prev = &l.root
+ l.len = 0
+ return l
+}
+
+// New returns an initialized list.
+func _New[T any]() *_List[T] { return new(_List[T]).Init() }
+
+// Len returns the number of elements of list l.
+// The complexity is O(1).
+func (l *_List[_]) Len() int { return l.len }
+
+// Front returns the first element of list l or nil if the list is empty.
+func (l *_List[T]) Front() *_Element[T] {
+ if l.len == 0 {
+ return nil
+ }
+ return l.root.next
+}
+
+// Back returns the last element of list l or nil if the list is empty.
+func (l *_List[T]) Back() *_Element[T] {
+ if l.len == 0 {
+ return nil
+ }
+ return l.root.prev
+}
+
+// lazyInit lazily initializes a zero _List value.
+func (l *_List[_]) lazyInit() {
+ if l.root.next == nil {
+ l.Init()
+ }
+}
+
+// insert inserts e after at, increments l.len, and returns e.
+func (l *_List[T]) insert(e, at *_Element[T]) *_Element[T] {
+ e.prev = at
+ e.next = at.next
+ e.prev.next = e
+ e.next.prev = e
+ e.list = l
+ l.len++
+ return e
+}
+
+// insertValue is a convenience wrapper for insert(&_Element[T]{Value: v}, at).
+func (l *_List[T]) insertValue(v T, at *_Element[T]) *_Element[T] {
+ return l.insert(&_Element[T]{Value: v}, at)
+}
+
+// remove removes e from its list, decrements l.len, and returns e.
+func (l *_List[T]) remove(e *_Element[T]) *_Element[T] {
+ e.prev.next = e.next
+ e.next.prev = e.prev
+ e.next = nil // avoid memory leaks
+ e.prev = nil // avoid memory leaks
+ e.list = nil
+ l.len--
+ return e
+}
+
+// move moves e to next to at and returns e.
+func (l *_List[T]) move(e, at *_Element[T]) *_Element[T] {
+ if e == at {
+ return e
+ }
+ e.prev.next = e.next
+ e.next.prev = e.prev
+
+ e.prev = at
+ e.next = at.next
+ e.prev.next = e
+ e.next.prev = e
+
+ return e
+}
+
+// Remove removes e from l if e is an element of list l.
+// It returns the element value e.Value.
+// The element must not be nil.
+func (l *_List[T]) Remove(e *_Element[T]) T {
+ if e.list == l {
+ // if e.list == l, l must have been initialized when e was inserted
+ // in l or l == nil (e is a zero _Element) and l.remove will crash
+ l.remove(e)
+ }
+ return e.Value
+}
+
+// PushFront inserts a new element e with value v at the front of list l and returns e.
+func (l *_List[T]) PushFront(v T) *_Element[T] {
+ l.lazyInit()
+ return l.insertValue(v, &l.root)
+}
+
+// PushBack inserts a new element e with value v at the back of list l and returns e.
+func (l *_List[T]) PushBack(v T) *_Element[T] {
+ l.lazyInit()
+ return l.insertValue(v, l.root.prev)
+}
+
+// InsertBefore inserts a new element e with value v immediately before mark and returns e.
+// If mark is not an element of l, the list is not modified.
+// The mark must not be nil.
+func (l *_List[T]) InsertBefore(v T, mark *_Element[T]) *_Element[T] {
+ if mark.list != l {
+ return nil
+ }
+ // see comment in _List.Remove about initialization of l
+ return l.insertValue(v, mark.prev)
+}
+
+// InsertAfter inserts a new element e with value v immediately after mark and returns e.
+// If mark is not an element of l, the list is not modified.
+// The mark must not be nil.
+func (l *_List[T]) InsertAfter(v T, mark *_Element[T]) *_Element[T] {
+ if mark.list != l {
+ return nil
+ }
+ // see comment in _List.Remove about initialization of l
+ return l.insertValue(v, mark)
+}
+
+// MoveToFront moves element e to the front of list l.
+// If e is not an element of l, the list is not modified.
+// The element must not be nil.
+func (l *_List[T]) MoveToFront(e *_Element[T]) {
+ if e.list != l || l.root.next == e {
+ return
+ }
+ // see comment in _List.Remove about initialization of l
+ l.move(e, &l.root)
+}
+
+// MoveToBack moves element e to the back of list l.
+// If e is not an element of l, the list is not modified.
+// The element must not be nil.
+func (l *_List[T]) MoveToBack(e *_Element[T]) {
+ if e.list != l || l.root.prev == e {
+ return
+ }
+ // see comment in _List.Remove about initialization of l
+ l.move(e, l.root.prev)
+}
+
+// MoveBefore moves element e to its new position before mark.
+// If e or mark is not an element of l, or e == mark, the list is not modified.
+// The element and mark must not be nil.
+func (l *_List[T]) MoveBefore(e, mark *_Element[T]) {
+ if e.list != l || e == mark || mark.list != l {
+ return
+ }
+ l.move(e, mark.prev)
+}
+
+// MoveAfter moves element e to its new position after mark.
+// If e or mark is not an element of l, or e == mark, the list is not modified.
+// The element and mark must not be nil.
+func (l *_List[T]) MoveAfter(e, mark *_Element[T]) {
+ if e.list != l || e == mark || mark.list != l {
+ return
+ }
+ l.move(e, mark)
+}
+
+// PushBackList inserts a copy of an other list at the back of list l.
+// The lists l and other may be the same. They must not be nil.
+func (l *_List[T]) PushBackList(other *_List[T]) {
+ l.lazyInit()
+ for i, e := other.Len(), other.Front(); i > 0; i, e = i-1, e.Next() {
+ l.insertValue(e.Value, l.root.prev)
+ }
+}
+
+// PushFrontList inserts a copy of an other list at the front of list l.
+// The lists l and other may be the same. They must not be nil.
+func (l *_List[T]) PushFrontList(other *_List[T]) {
+ l.lazyInit()
+ for i, e := other.Len(), other.Back(); i > 0; i, e = i-1, e.Prev() {
+ l.insertValue(e.Value, &l.root)
+ }
+}
+
+// Transform runs a transform function on a list returning a new list.
+func _Transform[TElem1, TElem2 any](lst *_List[TElem1], f func(TElem1) TElem2) *_List[TElem2] {
+ ret := _New[TElem2]()
+ for p := lst.Front(); p != nil; p = p.Next() {
+ ret.PushBack(f(p.Value))
+ }
+ return ret
+}
+
+func checkListLen[T any](l *_List[T], len int) bool {
+ if n := l.Len(); n != len {
+ panic(fmt.Sprintf("l.Len() = %d, want %d", n, len))
+ return false
+ }
+ return true
+}
+
+func checkListPointers[T any](l *_List[T], es []*_Element[T]) {
+ root := &l.root
+
+ if !checkListLen(l, len(es)) {
+ return
+ }
+
+ // zero length lists must be the zero value or properly initialized (sentinel circle)
+ if len(es) == 0 {
+ if l.root.next != nil && l.root.next != root || l.root.prev != nil && l.root.prev != root {
+ panic(fmt.Sprintf("l.root.next = %p, l.root.prev = %p; both should both be nil or %p", l.root.next, l.root.prev, root))
+ }
+ return
+ }
+ // len(es) > 0
+
+ // check internal and external prev/next connections
+ for i, e := range es {
+ prev := root
+ Prev := (*_Element[T])(nil)
+ if i > 0 {
+ prev = es[i-1]
+ Prev = prev
+ }
+ if p := e.prev; p != prev {
+ panic(fmt.Sprintf("elt[%d](%p).prev = %p, want %p", i, e, p, prev))
+ }
+ if p := e.Prev(); p != Prev {
+ panic(fmt.Sprintf("elt[%d](%p).Prev() = %p, want %p", i, e, p, Prev))
+ }
+
+ next := root
+ Next := (*_Element[T])(nil)
+ if i < len(es)-1 {
+ next = es[i+1]
+ Next = next
+ }
+ if n := e.next; n != next {
+ panic(fmt.Sprintf("elt[%d](%p).next = %p, want %p", i, e, n, next))
+ }
+ if n := e.Next(); n != Next {
+ panic(fmt.Sprintf("elt[%d](%p).Next() = %p, want %p", i, e, n, Next))
+ }
+ }
+}
+
+func TestList() {
+ l := _New[string]()
+ checkListPointers(l, []*(_Element[string]){})
+
+ // Single element list
+ e := l.PushFront("a")
+ checkListPointers(l, []*(_Element[string]){e})
+ l.MoveToFront(e)
+ checkListPointers(l, []*(_Element[string]){e})
+ l.MoveToBack(e)
+ checkListPointers(l, []*(_Element[string]){e})
+ l.Remove(e)
+ checkListPointers(l, []*(_Element[string]){})
+
+ // Bigger list
+ l2 := _New[int]()
+ e2 := l2.PushFront(2)
+ e1 := l2.PushFront(1)
+ e3 := l2.PushBack(3)
+ e4 := l2.PushBack(600)
+ checkListPointers(l2, []*(_Element[int]){e1, e2, e3, e4})
+
+ l2.Remove(e2)
+ checkListPointers(l2, []*(_Element[int]){e1, e3, e4})
+
+ l2.MoveToFront(e3) // move from middle
+ checkListPointers(l2, []*(_Element[int]){e3, e1, e4})
+
+ l2.MoveToFront(e1)
+ l2.MoveToBack(e3) // move from middle
+ checkListPointers(l2, []*(_Element[int]){e1, e4, e3})
+
+ l2.MoveToFront(e3) // move from back
+ checkListPointers(l2, []*(_Element[int]){e3, e1, e4})
+ l2.MoveToFront(e3) // should be no-op
+ checkListPointers(l2, []*(_Element[int]){e3, e1, e4})
+
+ l2.MoveToBack(e3) // move from front
+ checkListPointers(l2, []*(_Element[int]){e1, e4, e3})
+ l2.MoveToBack(e3) // should be no-op
+ checkListPointers(l2, []*(_Element[int]){e1, e4, e3})
+
+ e2 = l2.InsertBefore(2, e1) // insert before front
+ checkListPointers(l2, []*(_Element[int]){e2, e1, e4, e3})
+ l2.Remove(e2)
+ e2 = l2.InsertBefore(2, e4) // insert before middle
+ checkListPointers(l2, []*(_Element[int]){e1, e2, e4, e3})
+ l2.Remove(e2)
+ e2 = l2.InsertBefore(2, e3) // insert before back
+ checkListPointers(l2, []*(_Element[int]){e1, e4, e2, e3})
+ l2.Remove(e2)
+
+ e2 = l2.InsertAfter(2, e1) // insert after front
+ checkListPointers(l2, []*(_Element[int]){e1, e2, e4, e3})
+ l2.Remove(e2)
+ e2 = l2.InsertAfter(2, e4) // insert after middle
+ checkListPointers(l2, []*(_Element[int]){e1, e4, e2, e3})
+ l2.Remove(e2)
+ e2 = l2.InsertAfter(2, e3) // insert after back
+ checkListPointers(l2, []*(_Element[int]){e1, e4, e3, e2})
+ l2.Remove(e2)
+
+ // Check standard iteration.
+ sum := 0
+ for e := l2.Front(); e != nil; e = e.Next() {
+ sum += e.Value
+ }
+ if sum != 604 {
+ panic(fmt.Sprintf("sum over l = %d, want 604", sum))
+ }
+
+ // Clear all elements by iterating
+ var next *_Element[int]
+ for e := l2.Front(); e != nil; e = next {
+ next = e.Next()
+ l2.Remove(e)
+ }
+ checkListPointers(l2, []*(_Element[int]){})
+}
+
+func checkList[T comparable](l *_List[T], es []interface{}) {
+ if !checkListLen(l, len(es)) {
+ return
+ }
+
+ i := 0
+ for e := l.Front(); e != nil; e = e.Next() {
+ le := e.Value
+ // Comparison between a generically-typed variable le and an interface.
+ if le != es[i] {
+ panic(fmt.Sprintf("elt[%d].Value = %v, want %v", i, le, es[i]))
+ }
+ i++
+ }
+}
+
+func TestExtending() {
+ l1 := _New[int]()
+ l2 := _New[int]()
+
+ l1.PushBack(1)
+ l1.PushBack(2)
+ l1.PushBack(3)
+
+ l2.PushBack(4)
+ l2.PushBack(5)
+
+ l3 := _New[int]()
+ l3.PushBackList(l1)
+ checkList(l3, []interface{}{1, 2, 3})
+ l3.PushBackList(l2)
+ checkList(l3, []interface{}{1, 2, 3, 4, 5})
+
+ l3 = _New[int]()
+ l3.PushFrontList(l2)
+ checkList(l3, []interface{}{4, 5})
+ l3.PushFrontList(l1)
+ checkList(l3, []interface{}{1, 2, 3, 4, 5})
+
+ checkList(l1, []interface{}{1, 2, 3})
+ checkList(l2, []interface{}{4, 5})
+
+ l3 = _New[int]()
+ l3.PushBackList(l1)
+ checkList(l3, []interface{}{1, 2, 3})
+ l3.PushBackList(l3)
+ checkList(l3, []interface{}{1, 2, 3, 1, 2, 3})
+
+ l3 = _New[int]()
+ l3.PushFrontList(l1)
+ checkList(l3, []interface{}{1, 2, 3})
+ l3.PushFrontList(l3)
+ checkList(l3, []interface{}{1, 2, 3, 1, 2, 3})
+
+ l3 = _New[int]()
+ l1.PushBackList(l3)
+ checkList(l1, []interface{}{1, 2, 3})
+ l1.PushFrontList(l3)
+ checkList(l1, []interface{}{1, 2, 3})
+}
+
+func TestRemove() {
+ l := _New[int]()
+ e1 := l.PushBack(1)
+ e2 := l.PushBack(2)
+ checkListPointers(l, []*(_Element[int]){e1, e2})
+ e := l.Front()
+ l.Remove(e)
+ checkListPointers(l, []*(_Element[int]){e2})
+ l.Remove(e)
+ checkListPointers(l, []*(_Element[int]){e2})
+}
+
+func TestIssue4103() {
+ l1 := _New[int]()
+ l1.PushBack(1)
+ l1.PushBack(2)
+
+ l2 := _New[int]()
+ l2.PushBack(3)
+ l2.PushBack(4)
+
+ e := l1.Front()
+ l2.Remove(e) // l2 should not change because e is not an element of l2
+ if n := l2.Len(); n != 2 {
+ panic(fmt.Sprintf("l2.Len() = %d, want 2", n))
+ }
+
+ l1.InsertBefore(8, e)
+ if n := l1.Len(); n != 3 {
+ panic(fmt.Sprintf("l1.Len() = %d, want 3", n))
+ }
+}
+
+func TestIssue6349() {
+ l := _New[int]()
+ l.PushBack(1)
+ l.PushBack(2)
+
+ e := l.Front()
+ l.Remove(e)
+ if e.Value != 1 {
+ panic(fmt.Sprintf("e.value = %d, want 1", e.Value))
+ }
+ if e.Next() != nil {
+ panic(fmt.Sprintf("e.Next() != nil"))
+ }
+ if e.Prev() != nil {
+ panic(fmt.Sprintf("e.Prev() != nil"))
+ }
+}
+
+func TestMove() {
+ l := _New[int]()
+ e1 := l.PushBack(1)
+ e2 := l.PushBack(2)
+ e3 := l.PushBack(3)
+ e4 := l.PushBack(4)
+
+ l.MoveAfter(e3, e3)
+ checkListPointers(l, []*(_Element[int]){e1, e2, e3, e4})
+ l.MoveBefore(e2, e2)
+ checkListPointers(l, []*(_Element[int]){e1, e2, e3, e4})
+
+ l.MoveAfter(e3, e2)
+ checkListPointers(l, []*(_Element[int]){e1, e2, e3, e4})
+ l.MoveBefore(e2, e3)
+ checkListPointers(l, []*(_Element[int]){e1, e2, e3, e4})
+
+ l.MoveBefore(e2, e4)
+ checkListPointers(l, []*(_Element[int]){e1, e3, e2, e4})
+ e2, e3 = e3, e2
+
+ l.MoveBefore(e4, e1)
+ checkListPointers(l, []*(_Element[int]){e4, e1, e2, e3})
+ e1, e2, e3, e4 = e4, e1, e2, e3
+
+ l.MoveAfter(e4, e1)
+ checkListPointers(l, []*(_Element[int]){e1, e4, e2, e3})
+ e2, e3, e4 = e4, e2, e3
+
+ l.MoveAfter(e2, e3)
+ checkListPointers(l, []*(_Element[int]){e1, e3, e2, e4})
+ e2, e3 = e3, e2
+}
+
+// Test PushFront, PushBack, PushFrontList, PushBackList with uninitialized _List
+func TestZeroList() {
+ var l1 = new(_List[int])
+ l1.PushFront(1)
+ checkList(l1, []interface{}{1})
+
+ var l2 = new(_List[int])
+ l2.PushBack(1)
+ checkList(l2, []interface{}{1})
+
+ var l3 = new(_List[int])
+ l3.PushFrontList(l1)
+ checkList(l3, []interface{}{1})
+
+ var l4 = new(_List[int])
+ l4.PushBackList(l2)
+ checkList(l4, []interface{}{1})
+}
+
+// Test that a list l is not modified when calling InsertBefore with a mark that is not an element of l.
+func TestInsertBeforeUnknownMark() {
+ var l _List[int]
+ l.PushBack(1)
+ l.PushBack(2)
+ l.PushBack(3)
+ l.InsertBefore(1, new(_Element[int]))
+ checkList(&l, []interface{}{1, 2, 3})
+}
+
+// Test that a list l is not modified when calling InsertAfter with a mark that is not an element of l.
+func TestInsertAfterUnknownMark() {
+ var l _List[int]
+ l.PushBack(1)
+ l.PushBack(2)
+ l.PushBack(3)
+ l.InsertAfter(1, new(_Element[int]))
+ checkList(&l, []interface{}{1, 2, 3})
+}
+
+// Test that a list l is not modified when calling MoveAfter or MoveBefore with a mark that is not an element of l.
+func TestMoveUnknownMark() {
+ var l1 _List[int]
+ e1 := l1.PushBack(1)
+
+ var l2 _List[int]
+ e2 := l2.PushBack(2)
+
+ l1.MoveAfter(e1, e2)
+ checkList(&l1, []interface{}{1})
+ checkList(&l2, []interface{}{2})
+
+ l1.MoveBefore(e1, e2)
+ checkList(&l1, []interface{}{1})
+ checkList(&l2, []interface{}{2})
+}
+
+// Test the Transform function.
+func TestTransform() {
+ l1 := _New[int]()
+ l1.PushBack(1)
+ l1.PushBack(2)
+ l2 := _Transform(l1, strconv.Itoa)
+ checkList(l2, []interface{}{"1", "2"})
+}
+
+
+func main() {
+ TestList()
+}
+