// A Rat represents a quotient a/b of arbitrary precision.
// The zero value for a Rat represents the value 0.
type Rat struct {
- a Int
- b nat // len(b) == 0 acts like b == 1
+ // To make zero values for Rat work w/o initialization,
+ // a zero value of b (len(b) == 0) acts like b == 1.
+ // a.neg determines the sign of the Rat, b.neg is ignored.
+ a, b Int
}
// NewRat creates a new Rat with numerator a and denominator b.
babs = nat(nil).set(babs) // make a copy
}
z.a.abs = z.a.abs.set(a.abs)
- z.b = z.b.set(babs)
+ z.b.abs = z.b.abs.set(babs)
return z.norm()
}
b = -b
z.a.neg = !z.a.neg
}
- z.b = z.b.setUint64(uint64(b))
+ z.b.abs = z.b.abs.setUint64(uint64(b))
return z.norm()
}
// SetInt sets z to x (by making a copy of x) and returns z.
func (z *Rat) SetInt(x *Int) *Rat {
z.a.Set(x)
- z.b = z.b.make(0)
+ z.b.abs = z.b.abs.make(0)
return z
}
// SetInt64 sets z to x and returns z.
func (z *Rat) SetInt64(x int64) *Rat {
z.a.SetInt64(x)
- z.b = z.b.make(0)
+ z.b.abs = z.b.abs.make(0)
return z
}
func (z *Rat) Set(x *Rat) *Rat {
if z != x {
z.a.Set(&x.a)
- z.b = z.b.set(x.b)
+ z.b.Set(&x.b)
}
return z
}
panic("division by zero")
}
z.Set(x)
- a := z.b
+ a := z.b.abs
if len(a) == 0 {
- a = a.setWord(1) // materialize numerator
+ a = a.set(natOne) // materialize numerator
}
b := z.a.abs
if b.cmp(natOne) == 0 {
b = b.make(0) // normalize denominator
}
- z.a.abs, z.b = a, b // sign doesn't change
+ z.a.abs, z.b.abs = a, b // sign doesn't change
return z
}
// IsInt returns true if the denominator of x is 1.
func (x *Rat) IsInt() bool {
- return len(x.b) == 0 || x.b.cmp(natOne) == 0
+ return len(x.b.abs) == 0 || x.b.abs.cmp(natOne) == 0
}
// Num returns the numerator of x; it may be <= 0.
// The result is a reference to x's numerator; it
-// may change if a new value is assigned to x.
+// may change if a new value is assigned to x, and vice versa.
+// The sign of the numerator corresponds to the sign of x.
func (x *Rat) Num() *Int {
return &x.a
}
// Denom returns the denominator of x; it is always > 0.
// The result is a reference to x's denominator; it
-// may change if a new value is assigned to x.
+// may change if a new value is assigned to x, and vice versa.
func (x *Rat) Denom() *Int {
- if len(x.b) == 0 {
- return &Int{abs: nat{1}}
+ x.b.neg = false // the result is always >= 0
+ if len(x.b.abs) == 0 {
+ x.b.abs = x.b.abs.set(natOne) // materialize denominator
}
- return &Int{abs: x.b}
+ return &x.b
}
func gcd(x, y nat) nat {
case len(z.a.abs) == 0:
// z == 0 - normalize sign and denominator
z.a.neg = false
- z.b = z.b.make(0)
- case len(z.b) == 0:
+ z.b.abs = z.b.abs.make(0)
+ case len(z.b.abs) == 0:
// z is normalized int - nothing to do
- case z.b.cmp(natOne) == 0:
+ case z.b.abs.cmp(natOne) == 0:
// z is int - normalize denominator
- z.b = z.b.make(0)
+ z.b.abs = z.b.abs.make(0)
default:
- if f := gcd(z.a.abs, z.b); f.cmp(natOne) != 0 {
+ if f := gcd(z.a.abs, z.b.abs); f.cmp(natOne) != 0 {
z.a.abs, _ = z.a.abs.div(nil, z.a.abs, f)
- z.b, _ = z.b.div(nil, z.b, f)
+ z.b.abs, _ = z.b.abs.div(nil, z.b.abs, f)
+ if z.b.abs.cmp(natOne) == 0 {
+ // z is int - normalize denominator
+ z.b.abs = z.b.abs.make(0)
+ }
}
}
return z
// +1 if x > y
//
func (x *Rat) Cmp(y *Rat) int {
- return scaleDenom(&x.a, y.b).Cmp(scaleDenom(&y.a, x.b))
+ return scaleDenom(&x.a, y.b.abs).Cmp(scaleDenom(&y.a, x.b.abs))
}
// Add sets z to the sum x+y and returns z.
func (z *Rat) Add(x, y *Rat) *Rat {
- a1 := scaleDenom(&x.a, y.b)
- a2 := scaleDenom(&y.a, x.b)
+ a1 := scaleDenom(&x.a, y.b.abs)
+ a2 := scaleDenom(&y.a, x.b.abs)
z.a.Add(a1, a2)
- z.b = mulDenom(z.b, x.b, y.b)
+ z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
return z.norm()
}
// Sub sets z to the difference x-y and returns z.
func (z *Rat) Sub(x, y *Rat) *Rat {
- a1 := scaleDenom(&x.a, y.b)
- a2 := scaleDenom(&y.a, x.b)
+ a1 := scaleDenom(&x.a, y.b.abs)
+ a2 := scaleDenom(&y.a, x.b.abs)
z.a.Sub(a1, a2)
- z.b = mulDenom(z.b, x.b, y.b)
+ z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
return z.norm()
}
// Mul sets z to the product x*y and returns z.
func (z *Rat) Mul(x, y *Rat) *Rat {
z.a.Mul(&x.a, &y.a)
- z.b = mulDenom(z.b, x.b, y.b)
+ z.b.abs = mulDenom(z.b.abs, x.b.abs, y.b.abs)
return z.norm()
}
if len(y.a.abs) == 0 {
panic("division by zero")
}
- a := scaleDenom(&x.a, y.b)
- b := scaleDenom(&y.a, x.b)
+ a := scaleDenom(&x.a, y.b.abs)
+ b := scaleDenom(&y.a, x.b.abs)
z.a.abs = a.abs
- z.b = b.abs
+ z.b.abs = b.abs
z.a.neg = a.neg != b.neg
return z.norm()
}
}
s = s[sep+1:]
var err error
- if z.b, _, err = z.b.scan(strings.NewReader(s), 10); err != nil {
+ if z.b.abs, _, err = z.b.abs.scan(strings.NewReader(s), 10); err != nil {
return nil, false
}
return z.norm(), true
}
powTen := nat(nil).expNN(natTen, exp.abs, nil)
if exp.neg {
- z.b = powTen
+ z.b.abs = powTen
z.norm()
} else {
z.a.abs = z.a.abs.mul(z.a.abs, powTen)
- z.b = z.b.make(0)
+ z.b.abs = z.b.abs.make(0)
}
return z, true
// String returns a string representation of z in the form "a/b" (even if b == 1).
func (x *Rat) String() string {
s := "/1"
- if len(x.b) != 0 {
- s = "/" + x.b.decimalString()
+ if len(x.b.abs) != 0 {
+ s = "/" + x.b.abs.decimalString()
}
return x.a.String() + s
}
}
return s
}
- // x.b != 0
+ // x.b.abs != 0
- q, r := nat(nil).div(nat(nil), x.a.abs, x.b)
+ q, r := nat(nil).div(nat(nil), x.a.abs, x.b.abs)
p := natOne
if prec > 0 {
}
r = r.mul(r, p)
- r, r2 := r.div(nat(nil), r, x.b)
+ r, r2 := r.div(nat(nil), r, x.b.abs)
// see if we need to round up
r2 = r2.add(r2, r2)
- if x.b.cmp(r2) <= 0 {
+ if x.b.abs.cmp(r2) <= 0 {
r = r.add(r, natOne)
if r.cmp(p) >= 0 {
q = nat(nil).add(q, natOne)
// GobEncode implements the gob.GobEncoder interface.
func (x *Rat) GobEncode() ([]byte, error) {
- buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
- i := x.b.bytes(buf)
+ buf := make([]byte, 1+4+(len(x.a.abs)+len(x.b.abs))*_S) // extra bytes for version and sign bit (1), and numerator length (4)
+ i := x.b.abs.bytes(buf)
j := x.a.abs.bytes(buf[0:i])
n := i - j
if int(uint32(n)) != n {
i := j + binary.BigEndian.Uint32(buf[j-4:j])
z.a.neg = b&1 != 0
z.a.abs = z.a.abs.setBytes(buf[j:i])
- z.b = z.b.setBytes(buf[i:])
+ z.b.abs = z.b.abs.setBytes(buf[i:])
return nil
}