"math/big"
)
-// smallPrimes is a list of small, prime numbers that allows us to rapidly
-// exclude some fraction of composite candidates when searching for a random
-// prime. This list is truncated at the point where smallPrimesProduct exceeds
-// a uint64. It does not include two because we ensure that the candidates are
-// odd by construction.
-var smallPrimes = []uint8{
- 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53,
-}
-
-// smallPrimesProduct is the product of the values in smallPrimes and allows us
-// to reduce a candidate prime by this number and then determine whether it's
-// coprime to all the elements of smallPrimes without further big.Int
-// operations.
-var smallPrimesProduct = new(big.Int).SetUint64(16294579238595022365)
-
-// Prime returns a number, p, of the given size, such that p is prime
-// with high probability.
+// Prime returns a number of the given bit length that is prime with high probability.
// Prime will return error for any error returned by rand.Read or if bits < 2.
-func Prime(rand io.Reader, bits int) (p *big.Int, err error) {
+func Prime(rand io.Reader, bits int) (*big.Int, error) {
if bits < 2 {
- err = errors.New("crypto/rand: prime size must be at least 2-bit")
- return
+ return nil, errors.New("crypto/rand: prime size must be at least 2-bit")
}
b := uint(bits % 8)
}
bytes := make([]byte, (bits+7)/8)
- p = new(big.Int)
-
- bigMod := new(big.Int)
+ p := new(big.Int)
for {
- _, err = io.ReadFull(rand, bytes)
- if err != nil {
+ if _, err := io.ReadFull(rand, bytes); err != nil {
return nil, err
}
bytes[len(bytes)-1] |= 1
p.SetBytes(bytes)
-
- // Calculate the value mod the product of smallPrimes. If it's
- // a multiple of any of these primes we add two until it isn't.
- // The probability of overflowing is minimal and can be ignored
- // because we still perform Miller-Rabin tests on the result.
- bigMod.Mod(p, smallPrimesProduct)
- mod := bigMod.Uint64()
-
- NextDelta:
- for delta := uint64(0); delta < 1<<20; delta += 2 {
- m := mod + delta
- for _, prime := range smallPrimes {
- if m%uint64(prime) == 0 && (bits > 6 || m != uint64(prime)) {
- continue NextDelta
- }
- }
-
- if delta > 0 {
- bigMod.SetUint64(delta)
- p.Add(p, bigMod)
- }
- break
- }
-
- // There is a tiny possibility that, by adding delta, we caused
- // the number to be one bit too long. Thus we check BitLen
- // here.
- if p.ProbablyPrime(20) && p.BitLen() == bits {
- return
+ if p.ProbablyPrime(20) {
+ return p, nil
}
}
}