// ConvertibleTo reports whether a value of type V is convertible to a value of type T.
func ConvertibleTo(V, T Type) bool {
x := operand{mode: value, typ: V}
- return x.convertibleTo(nil, T, nil) // check not needed for non-constant x; if check == nil, cause can be nil
+ return x.convertibleTo(nil, T, nil) // check not needed for non-constant x
}
// Implements reports whether type V implements interface T.
return true
}
- // "V an integer or a slice of bytes or runes and T is a string type"
+ // "V is an integer or a slice of bytes or runes and T is a string type"
if (isInteger(V) || isBytesOrRunes(Vu)) && isString(T) {
return true
}
- // "V a string and T is a slice of bytes or runes"
+ // "V is a string and T is a slice of bytes or runes"
if isString(V) && isBytesOrRunes(Tu) {
return true
}
constArg := x.mode == constant_
var ok bool
- var reason string
+ var cause string
switch {
case constArg && isConstType(T):
// constant conversion
x.val = constant.MakeString(string(codepoint))
ok = true
}
- case x.convertibleTo(check, T, &reason):
+ case x.convertibleTo(check, T, &cause):
// non-constant conversion
x.mode = value
ok = true
}
if !ok {
- if reason != "" {
- check.errorf(x, _InvalidConversion, "cannot convert %s to %s (%s)", x, T, reason)
+ // TODO(rfindley): use types2-style error reporting here.
+ if cause != "" {
+ check.errorf(x, _InvalidConversion, "cannot convert %s to %s (%s)", x, T, cause)
} else {
check.errorf(x, _InvalidConversion, "cannot convert %s to %s", x, T)
}
// is tricky because we'd have to run updateExprType on the argument first.
// (Issue #21982.)
-// convertibleTo reports whether T(x) is valid.
+// convertibleTo reports whether T(x) is valid. In the failure case, *cause
+// may be set to the cause for the failure.
// The check parameter may be nil if convertibleTo is invoked through an
// exported API call, i.e., when all methods have been type-checked.
-func (x *operand) convertibleTo(check *Checker, T Type, reason *string) bool {
+func (x *operand) convertibleTo(check *Checker, T Type, cause *string) bool {
// "x is assignable to T"
- if ok, _ := x.assignableTo(check, T, nil); ok {
+ if ok, _ := x.assignableTo(check, T, cause); ok {
return true
}
- // "x's type and T have identical underlying types if tags are ignored"
- V := x.typ
+ errorf := func(format string, args ...interface{}) {
+ if check != nil && cause != nil {
+ msg := check.sprintf(format, args...)
+ if *cause != "" {
+ msg += "\n\t" + *cause
+ }
+ *cause = msg
+ }
+ }
+
+ // TODO(gri) consider passing under(x.typ), under(T) into convertibleToImpl (optimization)
+ Vp, _ := under(x.typ).(*TypeParam)
+ Tp, _ := under(T).(*TypeParam)
+
+ // generic cases
+ // (generic operands cannot be constants, so we can ignore x.val)
+ switch {
+ case Vp != nil && Tp != nil:
+ return Vp.is(func(V *term) bool {
+ return Tp.is(func(T *term) bool {
+ if !convertibleToImpl(check, V.typ, T.typ, cause) {
+ errorf("cannot convert %s (in %s) to %s (in %s)", V.typ, Vp, T.typ, Tp)
+ return false
+ }
+ return true
+ })
+ })
+ case Vp != nil:
+ return Vp.is(func(V *term) bool {
+ if !convertibleToImpl(check, V.typ, T, cause) {
+ errorf("cannot convert %s (in %s) to %s", V.typ, Vp, T)
+ return false
+ }
+ return true
+ })
+ case Tp != nil:
+ return Tp.is(func(T *term) bool {
+ if !convertibleToImpl(check, x.typ, T.typ, cause) {
+ errorf("cannot convert %s to %s (in %s)", x.typ, T.typ, Tp)
+ return false
+ }
+ return true
+ })
+ }
+
+ // non-generic case
+ return convertibleToImpl(check, x.typ, T, cause)
+}
+
+// convertibleToImpl should only be called by convertibleTo
+func convertibleToImpl(check *Checker, V, T Type, cause *string) bool {
+ // "V and T have identical underlying types if tags are ignored"
Vu := under(V)
Tu := under(T)
if IdenticalIgnoreTags(Vu, Tu) {
return true
}
- // "x's type and T are unnamed pointer types and their pointer base types
+ // "V and T are unnamed pointer types and their pointer base types
// have identical underlying types if tags are ignored"
if V, ok := V.(*Pointer); ok {
if T, ok := T.(*Pointer); ok {
}
}
- // "x's type and T are both integer or floating point types"
+ // "V and T are both integer or floating point types"
if isIntegerOrFloat(V) && isIntegerOrFloat(T) {
return true
}
- // "x's type and T are both complex types"
+ // "V and T are both complex types"
if isComplex(V) && isComplex(T) {
return true
}
- // "x is an integer or a slice of bytes or runes and T is a string type"
+ // "V is an integer or a slice of bytes or runes and T is a string type"
if (isInteger(V) || isBytesOrRunes(Vu)) && isString(T) {
return true
}
- // "x is a string and T is a slice of bytes or runes"
+ // "V is a string and T is a slice of bytes or runes"
if isString(V) && isBytesOrRunes(Tu) {
return true
}
return true
}
- // "x is a slice, T is a pointer-to-array type,
+ // "V is a slice, T is a pointer-to-array type,
// and the slice and array types have identical element types."
if s := asSlice(V); s != nil {
if p := asPointer(T); p != nil {
if check == nil || check.allowVersion(check.pkg, 1, 17) {
return true
}
- if reason != nil {
- *reason = "conversion of slices to array pointers requires go1.17 or later"
+ if cause != nil {
+ *cause = "conversion of slices to array pointers requires go1.17 or later"
}
}
}
if hasType {
if x.typ != Typ[Invalid] {
var intro string
- var tpar *TypeParam
if isGeneric(x.typ) {
intro = " of parameterized type "
- } else if tpar = asTypeParam(x.typ); tpar != nil {
- intro = " of type parameter "
} else {
intro = " of type "
}
buf.WriteString(intro)
WriteType(&buf, x.typ, qf)
- if tpar != nil {
+ if tpar := asTypeParam(x.typ); tpar != nil {
buf.WriteString(" constrained by ")
WriteType(&buf, tpar.bound, qf) // do not compute interface type sets here
}
if Ti, ok := Tu.(*Interface); ok {
if m, wrongType := check.missingMethod(V, Ti, true); m != nil /* Implements(V, Ti) */ {
if reason != nil {
+ // TODO(gri) the error messages here should follow the style in Checker.typeAssertion (factor!)
if wrongType != nil {
if Identical(m.typ, wrongType.typ) {
*reason = fmt.Sprintf("missing method %s (%s has pointer receiver)", m.name, m.name)
--- /dev/null
+// Copyright 2021 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package conversions
+
+import "unsafe"
+
+// "x is assignable to T"
+// - tested via assignability tests
+
+// "x's type and T have identical underlying types if tags are ignored"
+
+func _[X ~int, T ~int](x X) T { return T(x) }
+func _[X struct{f int "foo"}, T struct{f int "bar"}](x X) T { return T(x) }
+
+type Foo struct{f int "foo"}
+type Bar struct{f int "bar"}
+type Far struct{f float64 }
+
+func _[X Foo, T Bar](x X) T { return T(x) }
+func _[X Foo|Bar, T Bar](x X) T { return T(x) }
+func _[X Foo, T Foo|Bar](x X) T { return T(x) }
+func _[X Foo, T Far](x X) T { return T(x /* ERROR cannot convert x \(variable of type X constrained by Foo\) to T.*cannot convert Foo \(in X\) to Far \(in T\) */ ) }
+
+// "x's type and T are unnamed pointer types and their pointer base types
+// have identical underlying types if tags are ignored"
+
+func _[X ~*Foo, T ~*Bar](x X) T { return T(x) }
+func _[X ~*Foo|~*Bar, T ~*Bar](x X) T { return T(x) }
+func _[X ~*Foo, T ~*Foo|~*Bar](x X) T { return T(x) }
+func _[X ~*Foo, T ~*Far](x X) T { return T(x /* ERROR cannot convert x \(variable of type X constrained by ~\*Foo\) to T.*cannot convert \*Foo \(in X\) to \*Far \(in T\) */ ) }
+
+// Verify that the defined types in constraints are considered for the rule above.
+
+type (
+ B int
+ C int
+ X0 *B
+ T0 *C
+)
+
+func _(x X0) T0 { return T0(x /* ERROR cannot convert */ ) } // non-generic reference
+func _[X X0, T T0](x X) T { return T(x /* ERROR cannot convert */ ) }
+func _[T T0](x X0) T { return T(x /* ERROR cannot convert */ ) }
+func _[X X0](x X) T0 { return T0(x /* ERROR cannot convert */ ) }
+
+// "x's type and T are both integer or floating point types"
+
+func _[X Integer, T Integer](x X) T { return T(x) }
+func _[X Unsigned, T Integer](x X) T { return T(x) }
+func _[X Float, T Integer](x X) T { return T(x) }
+
+func _[X Integer, T Unsigned](x X) T { return T(x) }
+func _[X Unsigned, T Unsigned](x X) T { return T(x) }
+func _[X Float, T Unsigned](x X) T { return T(x) }
+
+func _[X Integer, T Float](x X) T { return T(x) }
+func _[X Unsigned, T Float](x X) T { return T(x) }
+func _[X Float, T Float](x X) T { return T(x) }
+
+func _[X, T Integer|Unsigned|Float](x X) T { return T(x) }
+func _[X, T Integer|~string](x X) T { return T(x /* ERROR cannot convert x \(variable of type X constrained by Integer\|~string\) to T.*cannot convert string \(in X\) to int \(in T\) */ ) }
+
+// "x's type and T are both complex types"
+
+func _[X, T Complex](x X) T { return T(x) }
+func _[X, T Float|Complex](x X) T { return T(x /* ERROR cannot convert x \(variable of type X constrained by Float\|Complex\) to T.*cannot convert float32 \(in X\) to complex64 \(in T\) */ ) }
+
+// "x is an integer or a slice of bytes or runes and T is a string type"
+
+type myInt int
+type myString string
+
+func _[T ~string](x int) T { return T(x) }
+func _[T ~string](x myInt) T { return T(x) }
+func _[X Integer](x X) string { return string(x) }
+func _[X Integer](x X) myString { return myString(x) }
+func _[X Integer](x X) *string { return (*string)(x /* ERROR cannot convert x \(variable of type X constrained by Integer\) to \*string.*cannot convert int \(in X\) to \*string */ ) }
+
+func _[T ~string](x []byte) T { return T(x) }
+func _[T ~string](x []rune) T { return T(x) }
+func _[X ~[]byte, T ~string](x X) T { return T(x) }
+func _[X ~[]rune, T ~string](x X) T { return T(x) }
+func _[X Integer|~[]byte|~[]rune, T ~string](x X) T { return T(x) }
+func _[X Integer|~[]byte|~[]rune, T ~*string](x X) T { return T(x /* ERROR cannot convert x \(variable of type X constrained by Integer\|~\[\]byte\|~\[\]rune\) to T.*cannot convert int \(in X\) to \*string \(in T\) */ ) }
+
+// "x is a string and T is a slice of bytes or runes"
+
+func _[T ~[]byte](x string) T { return T(x) }
+func _[T ~[]rune](x string) T { return T(x) }
+func _[T ~[]rune](x *string) T { return T(x /* ERROR cannot convert x \(variable of type \*string\) to T.*cannot convert \*string to \[\]rune \(in T\) */ ) }
+
+func _[X ~string, T ~[]byte](x X) T { return T(x) }
+func _[X ~string, T ~[]rune](x X) T { return T(x) }
+func _[X ~string, T ~[]byte|~[]rune](x X) T { return T(x) }
+func _[X ~*string, T ~[]byte|~[]rune](x X) T { return T(x /* ERROR cannot convert x \(variable of type X constrained by ~\*string\) to T.*cannot convert \*string \(in X\) to \[\]byte \(in T\) */ ) }
+
+// package unsafe:
+// "any pointer or value of underlying type uintptr can be converted into a unsafe.Pointer"
+
+type myUintptr uintptr
+
+func _[X ~uintptr](x X) unsafe.Pointer { return unsafe.Pointer(x) }
+func _[T unsafe.Pointer](x myUintptr) T { return T(x) }
+func _[T unsafe.Pointer](x int64) T { return T(x /* ERROR cannot convert x \(variable of type int64\) to T.*cannot convert int64 to unsafe\.Pointer \(in T\) */ ) }
+
+// "and vice versa"
+
+func _[T ~uintptr](x unsafe.Pointer) T { return T(x) }
+func _[X unsafe.Pointer](x X) uintptr { return uintptr(x) }
+func _[X unsafe.Pointer](x X) myUintptr { return myUintptr(x) }
+func _[X unsafe.Pointer](x X) int64 { return int64(x /* ERROR cannot convert x \(variable of type X constrained by unsafe\.Pointer\) to int64.*cannot convert unsafe\.Pointer \(in X\) to int64 */ ) }
+
+// "x is a slice, T is a pointer-to-array type,
+// and the slice and array types have identical element types."
+
+func _[X ~[]E, T ~*[10]E, E any](x X) T { return T(x) }
+func _[X ~[]E, T ~[10]E, E any](x X) T { return T(x /* ERROR cannot convert x \(variable of type X constrained by ~\[\]E\) to T.*cannot convert \[\]E \(in X\) to \[10\]E \(in T\) */ ) }
+
+// ----------------------------------------------------------------------------
+// The following declarations can be replaced by the exported types of the
+// constraints package once all builders support importing interfaces with
+// type constraints.
+
+type Signed interface {
+ ~int | ~int8 | ~int16 | ~int32 | ~int64
+}
+
+type Unsigned interface {
+ ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr
+}
+
+type Integer interface {
+ Signed | Unsigned
+}
+
+type Float interface {
+ ~float32 | ~float64
+}
+
+type Complex interface {
+ ~complex64 | ~complex128
+}