--- /dev/null
+<!--{
+"Title": "JSON and Go",
+"Template": true
+}-->
+
+<p>
+JSON (JavaScript Object Notation) is a simple data interchange format.
+Syntactically it resembles the objects and lists of JavaScript. It is most
+commonly used for communication between web back-ends and JavaScript programs
+running in the browser, but it is used in many other places, too. Its home page,
+<a href="http://json.org">json.org</a>, provides a wonderfully clear and concise
+definition of the standard.
+</p>
+
+<p>
+With the <a href="/pkg/encoding/json/">json package</a> it's a snap to read and
+write JSON data from your Go programs.
+</p>
+
+<p>
+<b>Encoding</b>
+</p>
+
+<p>
+To encode JSON data we use the
+<a href="/pkg/encoding/json/#Marshal"><code>Marshal</code></a> function.
+</p>
+
+<pre>
+func Marshal(v interface{}) ([]byte, error)
+</pre>
+
+<p>
+Given the Go data structure, <code>Message</code>,
+</p>
+
+{{code "/doc/progs/json1.go" `/type Message/` `/STOP/`}}
+
+<p>
+and an instance of <code>Message</code>
+</p>
+
+{{code "/doc/progs/json1.go" `/m :=/`}}
+
+<p>
+we can marshal a JSON-encoded version of m using <code>json.Marshal</code>:
+</p>
+
+{{code "/doc/progs/json1.go" `/b, err :=/`}}
+
+<p>
+If all is well, <code>err</code> will be <code>nil</code> and <code>b</code>
+will be a <code>[]byte</code> containing this JSON data:
+</p>
+
+<pre>
+b == []byte(`{"Name":"Alice","Body":"Hello","Time":1294706395881547000}`)
+</pre>
+
+<p>
+Only data structures that can be represented as valid JSON will be encoded:
+</p>
+
+<ul>
+<li>
+JSON objects only support strings as keys; to encode a Go map type it must be
+of the form <code>map[string]T</code> (where <code>T</code> is any Go type
+supported by the json package).
+</li>
+<li>
+Channel, complex, and function types cannot be encoded.
+</li>
+<li>
+Cyclic data structures are not supported; they will cause <code>Marshal</code>
+to go into an infinite loop.
+</li>
+<li>
+Pointers will be encoded as the values they point to (or 'null' if the pointer
+is <code>nil</code>).
+</li>
+</ul>
+
+<p>
+The json package only accesses the exported fields of struct types (those that
+begin with an uppercase letter). Therefore only the the exported fields of a
+struct will be present in the JSON output.
+</p>
+
+<p>
+<b>Decoding</b>
+</p>
+
+<p>
+To decode JSON data we use the
+<a href="/pkg/encoding/json/#Unmarshal"><code>Unmarshal</code></a> function.
+</p>
+
+<pre>
+func Unmarshal(data []byte, v interface{}) error
+</pre>
+
+<p>
+We must first create a place where the decoded data will be stored
+</p>
+
+{{code "/doc/progs/json1.go" `/var m Message/`}}
+
+<p>
+and call <code>json.Unmarshal</code>, passing it a <code>[]byte</code> of JSON
+data and a pointer to <code>m</code>
+</p>
+
+{{code "/doc/progs/json1.go" `/err := json.Unmarshal/`}}
+
+<p>
+If <code>b</code> contains valid JSON that fits in <code>m</code>, after the
+call <code>err</code> will be <code>nil</code> and the data from <code>b</code>
+will have been stored in the struct <code>m</code>, as if by an assignment
+like:
+</p>
+
+{{code "/doc/progs/json1.go" `/m = Message/` `/STOP/`}}
+
+<p>
+How does <code>Unmarshal</code> identify the fields in which to store the
+decoded data? For a given JSON key <code>"Foo"</code>, <code>Unmarshal</code>
+will look through the destination struct's fields to find (in order of
+preference):
+</p>
+
+<ul>
+<li>
+An exported field with a tag of <code>"Foo"</code> (see the
+<a href="/ref/spec#Struct_types">Go spec</a> for more on struct tags),
+</li>
+<li>
+An exported field named <code>"Foo"</code>, or
+</li>
+<li>
+An exported field named <code>"FOO"</code> or <code>"FoO"</code> or some other
+case-insensitive match of <code>"Foo"</code>.
+</li>
+</ul>
+
+<p>
+What happens when the structure of the JSON data doesn't exactly match the Go
+type?
+</p>
+
+{{code "/doc/progs/json1.go" `/"Food":"Pickle"/` `/STOP/`}}
+
+<p>
+<code>Unmarshal</code> will decode only the fields that it can find in the
+destination type. In this case, only the Name field of m will be populated,
+and the Food field will be ignored. This behavior is particularly useful when
+you wish to pick only a few specific fields out of a large JSON blob. It also
+means that any unexported fields in the destination struct will be unaffected
+by <code>Unmarshal</code>.
+</p>
+
+<p>
+But what if you don't know the structure of your JSON data beforehand?
+</p>
+
+<p>
+<b>Generic JSON with interface{}</b>
+</p>
+
+<p>
+The <code>interface{}</code> (empty interface) type describes an interface with
+zero methods. Every Go type implements at least zero methods and therefore
+satisfies the empty interface.
+</p>
+
+<p>
+The empty interface serves as a general container type:
+</p>
+
+{{code "/doc/progs/json2.go" `/var i interface{}/` `/STOP/`}}
+
+<p>
+A type assertion accesses the underlying concrete type:
+</p>
+
+{{code "/doc/progs/json2.go" `/r := i/` `/STOP/`}}
+
+<p>
+Or, if the underlying type is unknown, a type switch determines the type:
+</p>
+
+{{code "/doc/progs/json2.go" `/switch v/` `/STOP/`}}
+
+
+The json package uses <code>map[string]interface{}</code> and
+<code>[]interface{}</code> values to store arbitrary JSON objects and arrays;
+it will happily unmarshal any valid JSON blob into a plain
+<code>interface{}</code> value. The default concrete Go types are:
+
+<ul>
+<li>
+<code>bool</code> for JSON booleans,
+</li>
+<li>
+<code>float64</code> for JSON numbers,
+</li>
+<li>
+<code>string</code> for JSON strings, and
+</li>
+<li>
+<code>nil</code> for JSON null.
+</li>
+</ul>
+
+<p>
+<b>Decoding arbitrary data</b>
+</p>
+
+<p>
+Consider this JSON data, stored in the variable <code>b</code>:
+</p>
+
+{{code "/doc/progs/json3.go" `/b :=/`}}
+
+<p>
+Without knowing this data's structure, we can decode it into an
+<code>interface{}</code> value with <code>Unmarshal</code>:
+</p>
+
+{{code "/doc/progs/json3.go" `/var f interface/` `/STOP/`}}
+
+<p>
+At this point the Go value in <code>f</code> would be a map whose keys are
+strings and whose values are themselves stored as empty interface values:
+</p>
+
+{{code "/doc/progs/json3.go" `/f = map/` `/STOP/`}}
+
+<p>
+To access this data we can use a type assertion to access <code>f</code>'s
+underlying <code>map[string]interface{}</code>:
+</p>
+
+{{code "/doc/progs/json3.go" `/m := f/`}}
+
+<p>
+We can then iterate through the map with a range statement and use a type switch
+to access its values as their concrete types:
+</p>
+
+{{code "/doc/progs/json3.go" `/for k, v/` `/STOP/`}}
+
+<p>
+In this way you can work with unknown JSON data while still enjoying the
+benefits of type safety.
+</p>
+
+<p>
+<b>Reference Types</b>
+</p>
+
+<p>
+Let's define a Go type to contain the data from the previous example:
+</p>
+
+{{code "/doc/progs/json4.go" `/type FamilyMember/` `/STOP/`}}
+
+{{code "/doc/progs/json4.go" `/var m FamilyMember/` `/STOP/`}}
+
+<p>
+Unmarshaling that data into a <code>FamilyMember</code> value works as
+expected, but if we look closely we can see a remarkable thing has happened.
+With the var statement we allocated a <code>FamilyMember</code> struct, and
+then provided a pointer to that value to <code>Unmarshal</code>, but at that
+time the <code>Parents</code> field was a <code>nil</code> slice value. To
+populate the <code>Parents</code> field, <code>Unmarshal</code> allocated a new
+slice behind the scenes. This is typical of how <code>Unmarshal</code> works
+with the supported reference types (pointers, slices, and maps).
+</p>
+
+<p>
+Consider unmarshaling into this data structure:
+</p>
+
+<pre>
+type Foo struct {
+ Bar *Bar
+}
+</pre>
+
+<p>
+If there were a <code>Bar</code> field in the JSON object,
+<code>Unmarshal</code> would allocate a new <code>Bar</code> and populate it.
+If not, <code>Bar</code> would be left as a <code>nil</code> pointer.
+</p>
+
+<p>
+From this a useful pattern arises: if you have an application that receives a
+few distinct message types, you might define "receiver" structure like
+</p>
+
+<pre>
+type IncomingMessage struct {
+ Cmd *Command
+ Msg *Message
+}
+</pre>
+
+<p>
+and the sending party can populate the <code>Cmd</code> field and/or the
+<code>Msg</code> field of the top-level JSON object, depending on the type of
+message they want to communicate. <code>Unmarshal</code>, when decoding the
+JSON into an <code>IncomingMessage</code> struct, will only allocate the data
+structures present in the JSON data. To know which messages to process, the
+programmer need simply test that either <code>Cmd</code> or <code>Msg</code> is
+not <code>nil</code>.
+</p>
+
+<p>
+<b>Streaming Encoders and Decoders</b>
+</p>
+
+<p>
+The json package provides <code>Decoder</code> and <code>Encoder</code> types
+to support the common operation of reading and writing streams of JSON data.
+The <code>NewDecoder</code> and <code>NewEncoder</code> functions wrap the
+<a href="/pkg/io/#Reader"><code>io.Reader</code></a> and
+<a href="/pkg/io/#Writer"><code>io.Writer</code></a> interface types.
+</p>
+
+<pre>
+func NewDecoder(r io.Reader) *Decoder
+func NewEncoder(w io.Writer) *Encoder
+</pre>
+
+<p>
+Here's an example program that reads a series of JSON objects from standard
+input, removes all but the <code>Name</code> field from each object, and then
+writes the objects to standard output:
+</p>
+
+{{code "/doc/progs/json5.go" `/package main/` `$`}}
+
+<p>
+Due to the ubiquity of Readers and Writers, these <code>Encoder</code> and
+<code>Decoder</code> types can be used in a broad range of scenarios, such as
+reading and writing to HTTP connections, WebSockets, or files.
+</p>
+
+<p>
+<b>References</b>
+</p>
+
+<p>
+For more information see the <a href="/pkg/encoding/json/">json package documentation</a>. For an example usage of
+json see the source files of the <a href="/pkg/net/rpc/jsonrpc/">jsonrpc package</a>.
+</p>