]> Cypherpunks repositories - gostls13.git/commitdiff
cmd/compile: rework induction variable detector
authorKeith Randall <khr@golang.org>
Sat, 2 Jul 2022 18:07:55 +0000 (11:07 -0700)
committerHeschi Kreinick <heschi@google.com>
Wed, 6 Jul 2022 17:00:37 +0000 (17:00 +0000)
Induction variable detection is still not quite right. I've added
another failing test.

Redo the overflow/underflow detector so it is more obviously correct.

Update #53600
Fixes #53653
Fixes #53663

Change-Id: Id95228e282fdbf6bd80b26e1c41d62e935ba08ff
Reviewed-on: https://go-review.googlesource.com/c/go/+/415874
Run-TryBot: Keith Randall <khr@golang.org>
TryBot-Result: Gopher Robot <gobot@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
Reviewed-by: David Chase <drchase@google.com>
src/cmd/compile/internal/ssa/loopbce.go
test/fixedbugs/issue53600.go
test/fixedbugs/issue53600.out
test/fixedbugs/issue53653.go [new file with mode: 0644]
test/fixedbugs/issue53653.out [new file with mode: 0644]
test/loopbce.go

index a934cd2c7b293f712ad7c23dc39264d2c8bd5e9f..22fb5118ce30402be3bd2b7eaf25f217b03adf23 100644 (file)
@@ -5,6 +5,7 @@
 package ssa
 
 import (
+       "cmd/compile/internal/base"
        "fmt"
        "math"
 )
@@ -90,41 +91,42 @@ func findIndVar(f *Func) []indVar {
                        continue
                }
 
-               var flags indVarFlags
-               var ind, max *Value // induction, and maximum
+               var ind *Value   // induction variable
+               var init *Value  // starting value
+               var limit *Value // ending value
 
-               // Check thet the control if it either ind </<= max or max >/>= ind.
+               // Check thet the control if it either ind </<= limit or limit </<= ind.
                // TODO: Handle 32-bit comparisons.
                // TODO: Handle unsigned comparisons?
                c := b.Controls[0]
+               inclusive := false
                switch c.Op {
                case OpLeq64:
-                       flags |= indVarMaxInc
+                       inclusive = true
                        fallthrough
                case OpLess64:
-                       ind, max = c.Args[0], c.Args[1]
+                       ind, limit = c.Args[0], c.Args[1]
                default:
                        continue
                }
 
                // See if this is really an induction variable
                less := true
-               min, inc, nxt := parseIndVar(ind)
-               if min == nil {
+               init, inc, nxt := parseIndVar(ind)
+               if init == nil {
                        // We failed to parse the induction variable. Before punting, we want to check
-                       // whether the control op was written with arguments in non-idiomatic order,
-                       // so that we believe being "max" (the upper bound) is actually the induction
-                       // variable itself. This would happen for code like:
-                       //     for i := 0; len(n) > i; i++
-                       min, inc, nxt = parseIndVar(max)
-                       if min == nil {
+                       // whether the control op was written with the induction variable on the RHS
+                       // instead of the LHS. This happens for the downwards case, like:
+                       //     for i := len(n)-1; i >= 0; i--
+                       init, inc, nxt = parseIndVar(limit)
+                       if init == nil {
                                // No recognied induction variable on either operand
                                continue
                        }
 
                        // Ok, the arguments were reversed. Swap them, and remember that we're
                        // looking at a ind >/>= loop (so the induction must be decrementing).
-                       ind, max = max, ind
+                       ind, limit = limit, ind
                        less = false
                }
 
@@ -138,8 +140,8 @@ func findIndVar(f *Func) []indVar {
                }
 
                // Increment sign must match comparison direction.
-               // When incrementing, the termination comparison must be ind </<= max.
-               // When decrementing, the termination comparison must be ind >/>= max.
+               // When incrementing, the termination comparison must be ind </<= limit.
+               // When decrementing, the termination comparison must be ind >/>= limit.
                // See issue 26116.
                if step > 0 && !less {
                        continue
@@ -148,177 +150,229 @@ func findIndVar(f *Func) []indVar {
                        continue
                }
 
-               // If the increment is negative, swap min/max and their flags
-               if step < 0 {
-                       min, max = max, min
-                       oldf := flags
-                       flags = indVarMaxInc
-                       if oldf&indVarMaxInc == 0 {
-                               flags |= indVarMinExc
-                       }
-                       step = -step
-               }
-
-               if flags&indVarMaxInc != 0 && max.Op == OpConst64 && max.AuxInt+step < max.AuxInt {
-                       // For a <= comparison, we need to make sure that a value equal to
-                       // max can be incremented without overflowing.
-                       // (For a < comparison, the %step check below ensures no overflow.)
-                       continue
-               }
-
                // Up to now we extracted the induction variable (ind),
                // the increment delta (inc), the temporary sum (nxt),
-               // the minimum value (min) and the maximum value (max).
+               // the initial value (init) and the limiting value (limit).
                //
-               // We also know that ind has the form (Phi min nxt) where
+               // We also know that ind has the form (Phi init nxt) where
                // nxt is (Add inc nxt) which means: 1) inc dominates nxt
                // and 2) there is a loop starting at inc and containing nxt.
                //
                // We need to prove that the induction variable is incremented
-               // only when it's smaller than the maximum value.
+               // only when it's smaller than the limiting value.
                // Two conditions must happen listed below to accept ind
                // as an induction variable.
 
                // First condition: loop entry has a single predecessor, which
                // is the header block.  This implies that b.Succs[0] is
-               // reached iff ind < max.
+               // reached iff ind < limit.
                if len(b.Succs[0].b.Preds) != 1 {
                        // b.Succs[1] must exit the loop.
                        continue
                }
 
                // Second condition: b.Succs[0] dominates nxt so that
-               // nxt is computed when inc < max, meaning nxt <= max.
+               // nxt is computed when inc < limit.
                if !sdom.IsAncestorEq(b.Succs[0].b, nxt.Block) {
                        // inc+ind can only be reached through the branch that enters the loop.
                        continue
                }
 
-               // We can only guarantee that the loop runs within limits of induction variable
-               // if (one of)
-               // (1) the increment is ±1
-               // (2) the limits are constants
-               // (3) loop is of the form k0 upto Known_not_negative-k inclusive, step <= k
-               // (4) loop is of the form k0 upto Known_not_negative-k exclusive, step <= k+1
-               // (5) loop is of the form Known_not_negative downto k0, minint+step < k0
-               if step > 1 {
-                       ok := false
-                       if min.Op == OpConst64 && max.Op == OpConst64 {
-                               if max.AuxInt > min.AuxInt && max.AuxInt%step == min.AuxInt%step { // handle overflow
-                                       ok = true
-                               }
-                       }
-                       // Handle induction variables of these forms.
-                       // KNN is known-not-negative.
-                       // SIGNED ARITHMETIC ONLY. (see switch on c above)
-                       // Possibilities for KNN are len and cap; perhaps we can infer others.
-                       // for i := 0; i <= KNN-k    ; i += k
-                       // for i := 0; i <  KNN-(k-1); i += k
-                       // Also handle decreasing.
-
-                       // "Proof" copied from https://go-review.googlesource.com/c/go/+/104041/10/src/cmd/compile/internal/ssa/loopbce.go#164
-                       //
-                       //      In the case of
-                       //      // PC is Positive Constant
-                       //      L := len(A)-PC
-                       //      for i := 0; i < L; i = i+PC
-                       //
-                       //      we know:
-                       //
-                       //      0 + PC does not over/underflow.
-                       //      len(A)-PC does not over/underflow
-                       //      maximum value for L is MaxInt-PC
-                       //      i < L <= MaxInt-PC means i + PC < MaxInt hence no overflow.
-
-                       // To match in SSA:
-                       // if  (a) min.Op == OpConst64(k0)
-                       // and (b) k0 >= MININT + step
-                       // and (c) max.Op == OpSubtract(Op{StringLen,SliceLen,SliceCap}, k)
-                       // or  (c) max.Op == OpAdd(Op{StringLen,SliceLen,SliceCap}, -k)
-                       // or  (c) max.Op == Op{StringLen,SliceLen,SliceCap}
-                       // and (d) if upto loop, require indVarMaxInc && step <= k or !indVarMaxInc && step-1 <= k
-
-                       if min.Op == OpConst64 && min.AuxInt >= step+math.MinInt64 {
-                               knn := max
-                               k := int64(0)
-                               var kArg *Value
-
-                               switch max.Op {
-                               case OpSub64:
-                                       knn = max.Args[0]
-                                       kArg = max.Args[1]
-
-                               case OpAdd64:
-                                       knn = max.Args[0]
-                                       kArg = max.Args[1]
-                                       if knn.Op == OpConst64 {
-                                               knn, kArg = kArg, knn
+               // Check for overflow/underflow. We need to make sure that inc never causes
+               // the induction variable to wrap around.
+               // We use a function wrapper here for easy return true / return false / keep going logic.
+               // This function returns true if the increment will never overflow/underflow.
+               ok := func() bool {
+                       if step > 0 {
+                               if limit.Op == OpConst64 {
+                                       // Figure out the actual largest value.
+                                       v := limit.AuxInt
+                                       if !inclusive {
+                                               if v == math.MinInt64 {
+                                                       return false // < minint is never satisfiable.
+                                               }
+                                               v--
+                                       }
+                                       if init.Op == OpConst64 {
+                                               // Use stride to compute a better lower limit.
+                                               if init.AuxInt > v {
+                                                       return false
+                                               }
+                                               v = addU(init.AuxInt, diff(v, init.AuxInt)/uint64(step)*uint64(step))
                                        }
+                                       // It is ok if we can't overflow when incrementing from the largest value.
+                                       return !addWillOverflow(v, step)
                                }
-                               switch knn.Op {
-                               case OpSliceLen, OpStringLen, OpSliceCap:
-                               default:
-                                       knn = nil
+                               if step == 1 && !inclusive {
+                                       // Can't overflow because maxint is never a possible value.
+                                       return true
                                }
-
-                               if kArg != nil && kArg.Op == OpConst64 {
-                                       k = kArg.AuxInt
-                                       if max.Op == OpAdd64 {
-                                               k = -k
-                                       }
+                               // If the limit is not a constant, check to see if it is a
+                               // negative offset from a known non-negative value.
+                               knn, k := findKNN(limit)
+                               if knn == nil || k < 0 {
+                                       return false
+                               }
+                               // limit == (something nonnegative) - k. That subtraction can't underflow, so
+                               // we can trust it.
+                               if inclusive {
+                                       // ind <= knn - k cannot overflow if step is at most k
+                                       return step <= k
                                }
-                               if k >= 0 && knn != nil {
-                                       if inc.AuxInt > 0 { // increasing iteration
-                                               // The concern for the relation between step and k is to ensure that iv never exceeds knn
-                                               // i.e., iv < knn-(K-1) ==> iv + K <= knn; iv <= knn-K ==> iv +K < knn
-                                               if step <= k || flags&indVarMaxInc == 0 && step-1 == k {
-                                                       ok = true
+                               // ind < knn - k cannot overflow if step is at most k+1
+                               return step <= k+1 && k != math.MaxInt64
+                       } else { // step < 0
+                               if limit.Op == OpConst64 {
+                                       // Figure out the actual smallest value.
+                                       v := limit.AuxInt
+                                       if !inclusive {
+                                               if v == math.MaxInt64 {
+                                                       return false // > maxint is never satisfiable.
                                                }
-                                       } else { // decreasing iteration
-                                               // Will be decrementing from max towards min; max is knn-k; will only attempt decrement if
-                                               // knn-k >[=] min; underflow is only a concern if min-step is not smaller than min.
-                                               // This all assumes signed integer arithmetic
-                                               // This is already assured by the test above: min.AuxInt >= step+math.MinInt64
-                                               ok = true
+                                               v++
                                        }
+                                       if init.Op == OpConst64 {
+                                               // Use stride to compute a better lower limit.
+                                               if init.AuxInt < v {
+                                                       return false
+                                               }
+                                               v = subU(init.AuxInt, diff(init.AuxInt, v)/uint64(-step)*uint64(-step))
+                                       }
+                                       // It is ok if we can't underflow when decrementing from the smallest value.
+                                       return !subWillUnderflow(v, -step)
+                               }
+                               if step == -1 && !inclusive {
+                                       // Can't underflow because minint is never a possible value.
+                                       return true
                                }
                        }
+                       return false
 
-                       // TODO: other unrolling idioms
-                       // for i := 0; i < KNN - KNN % k ; i += k
-                       // for i := 0; i < KNN&^(k-1) ; i += k // k a power of 2
-                       // for i := 0; i < KNN&(-k) ; i += k // k a power of 2
+               }
 
-                       if !ok {
-                               continue
+               if ok() {
+                       flags := indVarFlags(0)
+                       var min, max *Value
+                       if step > 0 {
+                               min = init
+                               max = limit
+                               if inclusive {
+                                       flags |= indVarMaxInc
+                               }
+                       } else {
+                               min = limit
+                               max = init
+                               flags |= indVarMaxInc
+                               if !inclusive {
+                                       flags |= indVarMinExc
+                               }
+                               step = -step
+                       }
+                       if f.pass.debug >= 1 {
+                               printIndVar(b, ind, min, max, step, flags)
                        }
-               }
 
-               if f.pass.debug >= 1 {
-                       printIndVar(b, ind, min, max, step, flags)
+                       iv = append(iv, indVar{
+                               ind:   ind,
+                               min:   min,
+                               max:   max,
+                               entry: b.Succs[0].b,
+                               flags: flags,
+                       })
+                       b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max)
                }
 
-               iv = append(iv, indVar{
-                       ind:   ind,
-                       min:   min,
-                       max:   max,
-                       entry: b.Succs[0].b,
-                       flags: flags,
-               })
-               b.Logf("found induction variable %v (inc = %v, min = %v, max = %v)\n", ind, inc, min, max)
+               // TODO: other unrolling idioms
+               // for i := 0; i < KNN - KNN % k ; i += k
+               // for i := 0; i < KNN&^(k-1) ; i += k // k a power of 2
+               // for i := 0; i < KNN&(-k) ; i += k // k a power of 2
        }
 
        return iv
 }
 
-func dropAdd64(v *Value) (*Value, int64) {
-       if v.Op == OpAdd64 && v.Args[0].Op == OpConst64 {
-               return v.Args[1], v.Args[0].AuxInt
+// addWillOverflow reports whether x+y would result in a value more than maxint.
+func addWillOverflow(x, y int64) bool {
+       return x+y < x
+}
+
+// subWillUnderflow reports whether x-y would result in a value less than minint.
+func subWillUnderflow(x, y int64) bool {
+       return x-y > x
+}
+
+// diff returns x-y as a uint64. Requires x>=y.
+func diff(x, y int64) uint64 {
+       if x < y {
+               base.Fatalf("diff %d - %d underflowed", x, y)
+       }
+       return uint64(x - y)
+}
+
+// addU returns x+y. Requires that x+y does not overflow an int64.
+func addU(x int64, y uint64) int64 {
+       if y >= 1<<63 {
+               if x >= 0 {
+                       base.Fatalf("addU overflowed %d + %d", x, y)
+               }
+               x += 1<<63 - 1
+               x += 1
+               y -= 1 << 63
+       }
+       if addWillOverflow(x, int64(y)) {
+               base.Fatalf("addU overflowed %d + %d", x, y)
+       }
+       return x + int64(y)
+}
+
+// subU returns x-y. Requires that x-y does not underflow an int64.
+func subU(x int64, y uint64) int64 {
+       if y >= 1<<63 {
+               if x < 0 {
+                       base.Fatalf("subU underflowed %d - %d", x, y)
+               }
+               x -= 1<<63 - 1
+               x -= 1
+               y -= 1 << 63
+       }
+       if subWillUnderflow(x, int64(y)) {
+               base.Fatalf("subU underflowed %d - %d", x, y)
+       }
+       return x - int64(y)
+}
+
+// if v is known to be x - c, where x is known to be nonnegative and c is a
+// constant, return x, c. Otherwise return nil, 0.
+func findKNN(v *Value) (*Value, int64) {
+       var x, y *Value
+       x = v
+       switch v.Op {
+       case OpSub64:
+               x = v.Args[0]
+               y = v.Args[1]
+
+       case OpAdd64:
+               x = v.Args[0]
+               y = v.Args[1]
+               if x.Op == OpConst64 {
+                       x, y = y, x
+               }
+       }
+       switch x.Op {
+       case OpSliceLen, OpStringLen, OpSliceCap:
+       default:
+               return nil, 0
+       }
+       if y == nil {
+               return x, 0
+       }
+       if y.Op != OpConst64 {
+               return nil, 0
        }
-       if v.Op == OpAdd64 && v.Args[1].Op == OpConst64 {
-               return v.Args[0], v.Args[1].AuxInt
+       if v.Op == OpAdd64 {
+               return x, -y.AuxInt
        }
-       return v, 0
+       return x, y.AuxInt
 }
 
 func printIndVar(b *Block, i, min, max *Value, inc int64, flags indVarFlags) {
index fd3a9e5e470aa729714e940faf771e199fd83707..ead40b57af50c5942201247a53661cfe74c96aaf 100644 (file)
@@ -12,6 +12,7 @@ func main() {
        f()
        g()
        h()
+       j(math.MinInt64)
 }
 func f() {
        for i := int64(math.MaxInt64); i <= math.MaxInt64; i++ {
@@ -40,3 +41,13 @@ func h() {
                println(i, i < 0)
        }
 }
+
+//go:noinline
+func j(i int64) {
+       for j := int64(math.MaxInt64); j <= i-1; j++ {
+               if j < 0 {
+                       break
+               }
+               println(j)
+       }
+}
index 5590c7dcfb7070f0ef9027674165f24da0591ac4..577b50fd2cdc07debd932fc7b3c7a5cb841183fd 100644 (file)
@@ -6,3 +6,4 @@ done
 9223372036854775805 false
 9223372036854775807 false
 done
+9223372036854775807
diff --git a/test/fixedbugs/issue53653.go b/test/fixedbugs/issue53653.go
new file mode 100644 (file)
index 0000000..555f7da
--- /dev/null
@@ -0,0 +1,42 @@
+// run
+
+// Copyright 2022 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package main
+
+import "math"
+
+func main() {
+       f()
+       g()
+       h()
+}
+func f() {
+       for i := int64(math.MinInt64); i >= math.MinInt64; i-- {
+               if i > 0 {
+                       println("done")
+                       return
+               }
+               println(i, i > 0)
+       }
+}
+func g() {
+       for i := int64(math.MinInt64) + 1; i >= math.MinInt64; i-- {
+               if i > 0 {
+                       println("done")
+                       return
+               }
+               println(i, i > 0)
+       }
+}
+func h() {
+       for i := int64(math.MinInt64) + 2; i >= math.MinInt64; i -= 2 {
+               if i > 0 {
+                       println("done")
+                       return
+               }
+               println(i, i > 0)
+       }
+}
diff --git a/test/fixedbugs/issue53653.out b/test/fixedbugs/issue53653.out
new file mode 100644 (file)
index 0000000..f699392
--- /dev/null
@@ -0,0 +1,8 @@
+-9223372036854775808 false
+done
+-9223372036854775807 false
+-9223372036854775808 false
+done
+-9223372036854775806 false
+-9223372036854775808 false
+done
index f0c9bd0f81985d8a2ba2bb78fdbf53c262352747..4ae9a6a630b91208057cacb31d0b4f5cfddedd18 100644 (file)
@@ -3,6 +3,8 @@
 
 package main
 
+import "math"
+
 func f0a(a []int) int {
        x := 0
        for i := range a { // ERROR "Induction variable: limits \[0,\?\), increment 1$"
@@ -281,8 +283,8 @@ func d2(a [100]int) [100]int {
 
 func d3(a [100]int) [100]int {
        for i := 0; i <= 99; i++ { // ERROR "Induction variable: limits \[0,99\], increment 1$"
-               for j := 0; j <= i-1; j++ { // ERROR "Induction variable: limits \[0,\?\], increment 1$"
-                       a[j] = 0   // ERROR "Proved IsInBounds$"
+               for j := 0; j <= i-1; j++ {
+                       a[j] = 0
                        a[j+1] = 0 // ERROR "Proved IsInBounds$"
                        a[j+2] = 0
                }
@@ -290,7 +292,61 @@ func d3(a [100]int) [100]int {
        return a
 }
 
-func nobce1() {
+func d4() {
+       for i := int64(math.MaxInt64 - 9); i < math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775798,9223372036854775805\), increment 4$"
+               useString("foo")
+       }
+       for i := int64(math.MaxInt64 - 8); i < math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775799,9223372036854775805\), increment 4$"
+               useString("foo")
+       }
+       for i := int64(math.MaxInt64 - 7); i < math.MaxInt64-2; i += 4 {
+               useString("foo")
+       }
+       for i := int64(math.MaxInt64 - 6); i < math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775801,9223372036854775805\), increment 4$"
+               useString("foo")
+       }
+       for i := int64(math.MaxInt64 - 9); i <= math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775798,9223372036854775805\], increment 4$"
+               useString("foo")
+       }
+       for i := int64(math.MaxInt64 - 8); i <= math.MaxInt64-2; i += 4 { // ERROR "Induction variable: limits \[9223372036854775799,9223372036854775805\], increment 4$"
+               useString("foo")
+       }
+       for i := int64(math.MaxInt64 - 7); i <= math.MaxInt64-2; i += 4 {
+               useString("foo")
+       }
+       for i := int64(math.MaxInt64 - 6); i <= math.MaxInt64-2; i += 4 {
+               useString("foo")
+       }
+}
+
+func d5() {
+       for i := int64(math.MinInt64 + 9); i > math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \(-9223372036854775806,-9223372036854775799\], increment 4"
+               useString("foo")
+       }
+       for i := int64(math.MinInt64 + 8); i > math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \(-9223372036854775806,-9223372036854775800\], increment 4"
+               useString("foo")
+       }
+       for i := int64(math.MinInt64 + 7); i > math.MinInt64+2; i -= 4 {
+               useString("foo")
+       }
+       for i := int64(math.MinInt64 + 6); i > math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \(-9223372036854775806,-9223372036854775802\], increment 4"
+               useString("foo")
+       }
+       for i := int64(math.MinInt64 + 9); i >= math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \[-9223372036854775806,-9223372036854775799\], increment 4"
+               useString("foo")
+       }
+       for i := int64(math.MinInt64 + 8); i >= math.MinInt64+2; i -= 4 { // ERROR "Induction variable: limits \[-9223372036854775806,-9223372036854775800\], increment 4"
+               useString("foo")
+       }
+       for i := int64(math.MinInt64 + 7); i >= math.MinInt64+2; i -= 4 {
+               useString("foo")
+       }
+       for i := int64(math.MinInt64 + 6); i >= math.MinInt64+2; i -= 4 {
+               useString("foo")
+       }
+}
+
+func bce1() {
        // tests overflow of max-min
        a := int64(9223372036854774057)
        b := int64(-1547)
@@ -300,8 +356,7 @@ func nobce1() {
                panic("invalid test: modulos should differ")
        }
 
-       for i := b; i < a; i += z {
-               // No induction variable is possible because i will overflow a first iteration.
+       for i := b; i < a; i += z { // ERROR "Induction variable: limits \[-1547,9223372036854774057\), increment 1337"
                useString("foobar")
        }
 }