// functions for the predeclared unsigned integer types.
package bits
+const uintSize = 32 << (^uint(0) >> 32 & 1) // 32 or 64
+
// UintSize is the size of a uint in bits.
const UintSize = uintSize
// --- TrailingZeros ---
+// See http://supertech.csail.mit.edu/papers/debruijn.pdf
+const deBruijn32 = 0x077CB531
+
+var deBruijn32tab = [32]byte{
+ 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
+ 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
+}
+
+const deBruijn64 = 0x03f79d71b4ca8b09
+
+var deBruijn64tab = [64]byte{
+ 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
+ 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
+ 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
+ 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
+}
+
// TrailingZeros returns the number of trailing zero bits in x; the result is UintSize for x == 0.
-func TrailingZeros(x uint) int { return ntz(x) }
+func TrailingZeros(x uint) int {
+ if UintSize == 32 {
+ return TrailingZeros32(uint32(x))
+ }
+ return TrailingZeros64(uint64(x))
+}
// TrailingZeros8 returns the number of trailing zero bits in x; the result is 8 for x == 0.
-func TrailingZeros8(x uint8) int { return int(ntz8tab[x]) }
+func TrailingZeros8(x uint8) int {
+ return int(ntz8tab[x])
+}
// TrailingZeros16 returns the number of trailing zero bits in x; the result is 16 for x == 0.
-func TrailingZeros16(x uint16) int { return ntz16(x) }
+func TrailingZeros16(x uint16) (n int) {
+ if x == 0 {
+ return 16
+ }
+ // see comment in TrailingZeros64
+ return int(deBruijn32tab[uint32(x&-x)*deBruijn32>>(32-5)])
+}
// TrailingZeros32 returns the number of trailing zero bits in x; the result is 32 for x == 0.
-func TrailingZeros32(x uint32) int { return ntz32(x) }
+func TrailingZeros32(x uint32) int {
+ if x == 0 {
+ return 32
+ }
+ // see comment in TrailingZeros64
+ return int(deBruijn32tab[(x&-x)*deBruijn32>>(32-5)])
+}
// TrailingZeros64 returns the number of trailing zero bits in x; the result is 64 for x == 0.
-func TrailingZeros64(x uint64) int { return ntz64(x) }
+func TrailingZeros64(x uint64) int {
+ if x == 0 {
+ return 64
+ }
+ // If popcount is fast, replace code below with return popcount(^x & (x - 1)).
+ //
+ // x & -x leaves only the right-most bit set in the word. Let k be the
+ // index of that bit. Since only a single bit is set, the value is two
+ // to the power of k. Multiplying by a power of two is equivalent to
+ // left shifting, in this case by k bits. The de Bruijn (64 bit) constant
+ // is such that all six bit, consecutive substrings are distinct.
+ // Therefore, if we have a left shifted version of this constant we can
+ // find by how many bits it was shifted by looking at which six bit
+ // substring ended up at the top of the word.
+ // (Knuth, volume 4, section 7.3.1)
+ return int(deBruijn64tab[(x&-x)*deBruijn64>>(64-6)])
+}
// --- OnesCount ---
+++ /dev/null
-// Copyright 2017 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// This file provides basic implementations of the bits functions.
-
-package bits
-
-const uintSize = 32 << (^uint(0) >> 32 & 1) // 32 or 64
-
-func ntz(x uint) (n int) {
- if UintSize == 32 {
- return ntz32(uint32(x))
- }
- return ntz64(uint64(x))
-}
-
-// See http://supertech.csail.mit.edu/papers/debruijn.pdf
-const deBruijn32 = 0x077CB531
-
-var deBruijn32tab = [32]byte{
- 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
- 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
-}
-
-func ntz16(x uint16) (n int) {
- if x == 0 {
- return 16
- }
- // see comment in ntz64
- return int(deBruijn32tab[uint32(x&-x)*deBruijn32>>(32-5)])
-}
-
-func ntz32(x uint32) int {
- if x == 0 {
- return 32
- }
- // see comment in ntz64
- return int(deBruijn32tab[(x&-x)*deBruijn32>>(32-5)])
-}
-
-const deBruijn64 = 0x03f79d71b4ca8b09
-
-var deBruijn64tab = [64]byte{
- 0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
- 62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
- 63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
- 54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
-}
-
-func ntz64(x uint64) int {
- if x == 0 {
- return 64
- }
- // If popcount is fast, replace code below with return popcount(^x & (x - 1)).
- //
- // x & -x leaves only the right-most bit set in the word. Let k be the
- // index of that bit. Since only a single bit is set, the value is two
- // to the power of k. Multiplying by a power of two is equivalent to
- // left shifting, in this case by k bits. The de Bruijn (64 bit) constant
- // is such that all six bit, consecutive substrings are distinct.
- // Therefore, if we have a left shifted version of this constant we can
- // find by how many bits it was shifted by looking at which six bit
- // substring ended up at the top of the word.
- // (Knuth, volume 4, section 7.3.1)
- return int(deBruijn64tab[(x&-x)*deBruijn64>>(64-6)])
-}