import "unsafe"
+// Goroutine scheduler
+// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
+//
+// The main concepts are:
+// G - goroutine.
+// M - worker thread, or machine.
+// P - processor, a resource that is required to execute Go code.
+// M must have an associated P to execute Go code, however it can be
+// blocked or in a syscall w/o an associated P.
+//
+// Design doc at https://golang.org/s/go11sched.
+
+var (
+ m0 m
+ g0 g
+)
+
//go:linkname runtime_init runtime.init
func runtime_init()
allglen = uintptr(len(allgs))
unlock(&allglock)
}
+
+const (
+ // Number of goroutine ids to grab from sched.goidgen to local per-P cache at once.
+ // 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
+ _GoidCacheBatch = 16
+)
+
+// The bootstrap sequence is:
+//
+// call osinit
+// call schedinit
+// make & queue new G
+// call runtimeĀ·mstart
+//
+// The new G calls runtimeĀ·main.
+func schedinit() {
+ // raceinit must be the first call to race detector.
+ // In particular, it must be done before mallocinit below calls racemapshadow.
+ _g_ := getg()
+ if raceenabled {
+ _g_.racectx = raceinit()
+ }
+
+ sched.maxmcount = 10000
+
+ // Cache the framepointer experiment. This affects stack unwinding.
+ framepointer_enabled = haveexperiment("framepointer")
+
+ tracebackinit()
+ moduledataverify()
+ stackinit()
+ mallocinit()
+ mcommoninit(_g_.m)
+
+ goargs()
+ goenvs()
+ parsedebugvars()
+ gcinit()
+
+ sched.lastpoll = uint64(nanotime())
+ procs := int(ncpu)
+ if n := atoi(gogetenv("GOMAXPROCS")); n > 0 {
+ if n > _MaxGomaxprocs {
+ n = _MaxGomaxprocs
+ }
+ procs = n
+ }
+ if procresize(int32(procs)) != nil {
+ throw("unknown runnable goroutine during bootstrap")
+ }
+
+ if buildVersion == "" {
+ // Condition should never trigger. This code just serves
+ // to ensure runtimeĀ·buildVersion is kept in the resulting binary.
+ buildVersion = "unknown"
+ }
+}
+
+func dumpgstatus(gp *g) {
+ _g_ := getg()
+ print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
+ print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n")
+}
+
+func checkmcount() {
+ // sched lock is held
+ if sched.mcount > sched.maxmcount {
+ print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
+ throw("thread exhaustion")
+ }
+}
+
+func mcommoninit(mp *m) {
+ _g_ := getg()
+
+ // g0 stack won't make sense for user (and is not necessary unwindable).
+ if _g_ != _g_.m.g0 {
+ callers(1, mp.createstack[:])
+ }
+
+ mp.fastrand = 0x49f6428a + uint32(mp.id) + uint32(cputicks())
+ if mp.fastrand == 0 {
+ mp.fastrand = 0x49f6428a
+ }
+
+ lock(&sched.lock)
+ mp.id = sched.mcount
+ sched.mcount++
+ checkmcount()
+ mpreinit(mp)
+ if mp.gsignal != nil {
+ mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard
+ }
+
+ // Add to allm so garbage collector doesn't free g->m
+ // when it is just in a register or thread-local storage.
+ mp.alllink = allm
+
+ // NumCgoCall() iterates over allm w/o schedlock,
+ // so we need to publish it safely.
+ atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
+ unlock(&sched.lock)
+}
+
+// Mark gp ready to run.
+func ready(gp *g, traceskip int) {
+ if trace.enabled {
+ traceGoUnpark(gp, traceskip)
+ }
+
+ status := readgstatus(gp)
+
+ // Mark runnable.
+ _g_ := getg()
+ _g_.m.locks++ // disable preemption because it can be holding p in a local var
+ if status&^_Gscan != _Gwaiting {
+ dumpgstatus(gp)
+ throw("bad g->status in ready")
+ }
+
+ // status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ runqput(_g_.m.p.ptr(), gp, true)
+ if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 { // TODO: fast atomic
+ wakep()
+ }
+ _g_.m.locks--
+ if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
+ _g_.stackguard0 = stackPreempt
+ }
+}
+
+func gcprocs() int32 {
+ // Figure out how many CPUs to use during GC.
+ // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
+ lock(&sched.lock)
+ n := gomaxprocs
+ if n > ncpu {
+ n = ncpu
+ }
+ if n > _MaxGcproc {
+ n = _MaxGcproc
+ }
+ if n > sched.nmidle+1 { // one M is currently running
+ n = sched.nmidle + 1
+ }
+ unlock(&sched.lock)
+ return n
+}
+
+func needaddgcproc() bool {
+ lock(&sched.lock)
+ n := gomaxprocs
+ if n > ncpu {
+ n = ncpu
+ }
+ if n > _MaxGcproc {
+ n = _MaxGcproc
+ }
+ n -= sched.nmidle + 1 // one M is currently running
+ unlock(&sched.lock)
+ return n > 0
+}
+
+func helpgc(nproc int32) {
+ _g_ := getg()
+ lock(&sched.lock)
+ pos := 0
+ for n := int32(1); n < nproc; n++ { // one M is currently running
+ if allp[pos].mcache == _g_.m.mcache {
+ pos++
+ }
+ mp := mget()
+ if mp == nil {
+ throw("gcprocs inconsistency")
+ }
+ mp.helpgc = n
+ mp.p.set(allp[pos])
+ mp.mcache = allp[pos].mcache
+ pos++
+ notewakeup(&mp.park)
+ }
+ unlock(&sched.lock)
+}
+
+// freezeStopWait is a large value that freezetheworld sets
+// sched.stopwait to in order to request that all Gs permanently stop.
+const freezeStopWait = 0x7fffffff
+
+// Similar to stopTheWorld but best-effort and can be called several times.
+// There is no reverse operation, used during crashing.
+// This function must not lock any mutexes.
+func freezetheworld() {
+ // stopwait and preemption requests can be lost
+ // due to races with concurrently executing threads,
+ // so try several times
+ for i := 0; i < 5; i++ {
+ // this should tell the scheduler to not start any new goroutines
+ sched.stopwait = freezeStopWait
+ atomicstore(&sched.gcwaiting, 1)
+ // this should stop running goroutines
+ if !preemptall() {
+ break // no running goroutines
+ }
+ usleep(1000)
+ }
+ // to be sure
+ usleep(1000)
+ preemptall()
+ usleep(1000)
+}
+
+func isscanstatus(status uint32) bool {
+ if status == _Gscan {
+ throw("isscanstatus: Bad status Gscan")
+ }
+ return status&_Gscan == _Gscan
+}
+
+// All reads and writes of g's status go through readgstatus, casgstatus
+// castogscanstatus, casfrom_Gscanstatus.
+//go:nosplit
+func readgstatus(gp *g) uint32 {
+ return atomicload(&gp.atomicstatus)
+}
+
+// Ownership of gscanvalid:
+//
+// If gp is running (meaning status == _Grunning or _Grunning|_Gscan),
+// then gp owns gp.gscanvalid, and other goroutines must not modify it.
+//
+// Otherwise, a second goroutine can lock the scan state by setting _Gscan
+// in the status bit and then modify gscanvalid, and then unlock the scan state.
+//
+// Note that the first condition implies an exception to the second:
+// if a second goroutine changes gp's status to _Grunning|_Gscan,
+// that second goroutine still does not have the right to modify gscanvalid.
+
+// The Gscanstatuses are acting like locks and this releases them.
+// If it proves to be a performance hit we should be able to make these
+// simple atomic stores but for now we are going to throw if
+// we see an inconsistent state.
+func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
+ success := false
+
+ // Check that transition is valid.
+ switch oldval {
+ default:
+ print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
+ dumpgstatus(gp)
+ throw("casfrom_Gscanstatus:top gp->status is not in scan state")
+ case _Gscanrunnable,
+ _Gscanwaiting,
+ _Gscanrunning,
+ _Gscansyscall:
+ if newval == oldval&^_Gscan {
+ success = cas(&gp.atomicstatus, oldval, newval)
+ }
+ case _Gscanenqueue:
+ if newval == _Gwaiting {
+ success = cas(&gp.atomicstatus, oldval, newval)
+ }
+ }
+ if !success {
+ print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
+ dumpgstatus(gp)
+ throw("casfrom_Gscanstatus: gp->status is not in scan state")
+ }
+ if newval == _Grunning {
+ gp.gcscanvalid = false
+ }
+}
+
+// This will return false if the gp is not in the expected status and the cas fails.
+// This acts like a lock acquire while the casfromgstatus acts like a lock release.
+func castogscanstatus(gp *g, oldval, newval uint32) bool {
+ switch oldval {
+ case _Grunnable,
+ _Gwaiting,
+ _Gsyscall:
+ if newval == oldval|_Gscan {
+ return cas(&gp.atomicstatus, oldval, newval)
+ }
+ case _Grunning:
+ if newval == _Gscanrunning || newval == _Gscanenqueue {
+ return cas(&gp.atomicstatus, oldval, newval)
+ }
+ }
+ print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
+ throw("castogscanstatus")
+ panic("not reached")
+}
+
+// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
+// and casfrom_Gscanstatus instead.
+// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
+// put it in the Gscan state is finished.
+//go:nosplit
+func casgstatus(gp *g, oldval, newval uint32) {
+ if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
+ systemstack(func() {
+ print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
+ throw("casgstatus: bad incoming values")
+ })
+ }
+
+ if oldval == _Grunning && gp.gcscanvalid {
+ // If oldvall == _Grunning, then the actual status must be
+ // _Grunning or _Grunning|_Gscan; either way,
+ // we own gp.gcscanvalid, so it's safe to read.
+ // gp.gcscanvalid must not be true when we are running.
+ print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n")
+ throw("casgstatus")
+ }
+
+ // loop if gp->atomicstatus is in a scan state giving
+ // GC time to finish and change the state to oldval.
+ for !cas(&gp.atomicstatus, oldval, newval) {
+ if oldval == _Gwaiting && gp.atomicstatus == _Grunnable {
+ systemstack(func() {
+ throw("casgstatus: waiting for Gwaiting but is Grunnable")
+ })
+ }
+ // Help GC if needed.
+ // if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) {
+ // gp.preemptscan = false
+ // systemstack(func() {
+ // gcphasework(gp)
+ // })
+ // }
+ }
+ if newval == _Grunning {
+ gp.gcscanvalid = false
+ }
+}
+
+// casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable.
+// Returns old status. Cannot call casgstatus directly, because we are racing with an
+// async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus,
+// it might have become Grunnable by the time we get to the cas. If we called casgstatus,
+// it would loop waiting for the status to go back to Gwaiting, which it never will.
+//go:nosplit
+func casgcopystack(gp *g) uint32 {
+ for {
+ oldstatus := readgstatus(gp) &^ _Gscan
+ if oldstatus != _Gwaiting && oldstatus != _Grunnable {
+ throw("copystack: bad status, not Gwaiting or Grunnable")
+ }
+ if cas(&gp.atomicstatus, oldstatus, _Gcopystack) {
+ return oldstatus
+ }
+ }
+}
+
+// scang blocks until gp's stack has been scanned.
+// It might be scanned by scang or it might be scanned by the goroutine itself.
+// Either way, the stack scan has completed when scang returns.
+func scang(gp *g) {
+ // Invariant; we (the caller, markroot for a specific goroutine) own gp.gcscandone.
+ // Nothing is racing with us now, but gcscandone might be set to true left over
+ // from an earlier round of stack scanning (we scan twice per GC).
+ // We use gcscandone to record whether the scan has been done during this round.
+ // It is important that the scan happens exactly once: if called twice,
+ // the installation of stack barriers will detect the double scan and die.
+
+ gp.gcscandone = false
+
+ // Endeavor to get gcscandone set to true,
+ // either by doing the stack scan ourselves or by coercing gp to scan itself.
+ // gp.gcscandone can transition from false to true when we're not looking
+ // (if we asked for preemption), so any time we lock the status using
+ // castogscanstatus we have to double-check that the scan is still not done.
+ for !gp.gcscandone {
+ switch s := readgstatus(gp); s {
+ default:
+ dumpgstatus(gp)
+ throw("stopg: invalid status")
+
+ case _Gdead:
+ // No stack.
+ gp.gcscandone = true
+
+ case _Gcopystack:
+ // Stack being switched. Go around again.
+
+ case _Grunnable, _Gsyscall, _Gwaiting:
+ // Claim goroutine by setting scan bit.
+ // Racing with execution or readying of gp.
+ // The scan bit keeps them from running
+ // the goroutine until we're done.
+ if castogscanstatus(gp, s, s|_Gscan) {
+ if !gp.gcscandone {
+ // Coordinate with traceback
+ // in sigprof.
+ for !cas(&gp.stackLock, 0, 1) {
+ osyield()
+ }
+ scanstack(gp)
+ atomicstore(&gp.stackLock, 0)
+ gp.gcscandone = true
+ }
+ restartg(gp)
+ }
+
+ case _Gscanwaiting:
+ // newstack is doing a scan for us right now. Wait.
+
+ case _Grunning:
+ // Goroutine running. Try to preempt execution so it can scan itself.
+ // The preemption handler (in newstack) does the actual scan.
+
+ // Optimization: if there is already a pending preemption request
+ // (from the previous loop iteration), don't bother with the atomics.
+ if gp.preemptscan && gp.preempt && gp.stackguard0 == stackPreempt {
+ break
+ }
+
+ // Ask for preemption and self scan.
+ if castogscanstatus(gp, _Grunning, _Gscanrunning) {
+ if !gp.gcscandone {
+ gp.preemptscan = true
+ gp.preempt = true
+ gp.stackguard0 = stackPreempt
+ }
+ casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
+ }
+ }
+ }
+
+ gp.preemptscan = false // cancel scan request if no longer needed
+}
+
+// The GC requests that this routine be moved from a scanmumble state to a mumble state.
+func restartg(gp *g) {
+ s := readgstatus(gp)
+ switch s {
+ default:
+ dumpgstatus(gp)
+ throw("restartg: unexpected status")
+
+ case _Gdead:
+ // ok
+
+ case _Gscanrunnable,
+ _Gscanwaiting,
+ _Gscansyscall:
+ casfrom_Gscanstatus(gp, s, s&^_Gscan)
+
+ // Scan is now completed.
+ // Goroutine now needs to be made runnable.
+ // We put it on the global run queue; ready blocks on the global scheduler lock.
+ case _Gscanenqueue:
+ casfrom_Gscanstatus(gp, _Gscanenqueue, _Gwaiting)
+ if gp != getg().m.curg {
+ throw("processing Gscanenqueue on wrong m")
+ }
+ dropg()
+ ready(gp, 0)
+ }
+}
+
+// stopTheWorld stops all P's from executing goroutines, interrupting
+// all goroutines at GC safe points and records reason as the reason
+// for the stop. On return, only the current goroutine's P is running.
+// stopTheWorld must not be called from a system stack and the caller
+// must not hold worldsema. The caller must call startTheWorld when
+// other P's should resume execution.
+//
+// stopTheWorld is safe for multiple goroutines to call at the
+// same time. Each will execute its own stop, and the stops will
+// be serialized.
+//
+// This is also used by routines that do stack dumps. If the system is
+// in panic or being exited, this may not reliably stop all
+// goroutines.
+func stopTheWorld(reason string) {
+ semacquire(&worldsema, false)
+ getg().m.preemptoff = reason
+ systemstack(stopTheWorldWithSema)
+}
+
+// startTheWorld undoes the effects of stopTheWorld.
+func startTheWorld() {
+ systemstack(startTheWorldWithSema)
+ // worldsema must be held over startTheWorldWithSema to ensure
+ // gomaxprocs cannot change while worldsema is held.
+ semrelease(&worldsema)
+ getg().m.preemptoff = ""
+}
+
+// Holding worldsema grants an M the right to try to stop the world
+// and prevents gomaxprocs from changing concurrently.
+var worldsema uint32 = 1
+
+// stopTheWorldWithSema is the core implementation of stopTheWorld.
+// The caller is responsible for acquiring worldsema and disabling
+// preemption first and then should stopTheWorldWithSema on the system
+// stack:
+//
+// semacquire(&worldsema, false)
+// m.preemptoff = "reason"
+// systemstack(stopTheWorldWithSema)
+//
+// When finished, the caller must either call startTheWorld or undo
+// these three operations separately:
+//
+// m.preemptoff = ""
+// systemstack(startTheWorldWithSema)
+// semrelease(&worldsema)
+//
+// It is allowed to acquire worldsema once and then execute multiple
+// startTheWorldWithSema/stopTheWorldWithSema pairs.
+// Other P's are able to execute between successive calls to
+// startTheWorldWithSema and stopTheWorldWithSema.
+// Holding worldsema causes any other goroutines invoking
+// stopTheWorld to block.
+func stopTheWorldWithSema() {
+ _g_ := getg()
+
+ // If we hold a lock, then we won't be able to stop another M
+ // that is blocked trying to acquire the lock.
+ if _g_.m.locks > 0 {
+ throw("stopTheWorld: holding locks")
+ }
+
+ lock(&sched.lock)
+ sched.stopwait = gomaxprocs
+ atomicstore(&sched.gcwaiting, 1)
+ preemptall()
+ // stop current P
+ _g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic.
+ sched.stopwait--
+ // try to retake all P's in Psyscall status
+ for i := 0; i < int(gomaxprocs); i++ {
+ p := allp[i]
+ s := p.status
+ if s == _Psyscall && cas(&p.status, s, _Pgcstop) {
+ if trace.enabled {
+ traceGoSysBlock(p)
+ traceProcStop(p)
+ }
+ p.syscalltick++
+ sched.stopwait--
+ }
+ }
+ // stop idle P's
+ for {
+ p := pidleget()
+ if p == nil {
+ break
+ }
+ p.status = _Pgcstop
+ sched.stopwait--
+ }
+ wait := sched.stopwait > 0
+ unlock(&sched.lock)
+
+ // wait for remaining P's to stop voluntarily
+ if wait {
+ for {
+ // wait for 100us, then try to re-preempt in case of any races
+ if notetsleep(&sched.stopnote, 100*1000) {
+ noteclear(&sched.stopnote)
+ break
+ }
+ preemptall()
+ }
+ }
+ if sched.stopwait != 0 {
+ throw("stopTheWorld: not stopped")
+ }
+ for i := 0; i < int(gomaxprocs); i++ {
+ p := allp[i]
+ if p.status != _Pgcstop {
+ throw("stopTheWorld: not stopped")
+ }
+ }
+}
+
+func mhelpgc() {
+ _g_ := getg()
+ _g_.m.helpgc = -1
+}
+
+func startTheWorldWithSema() {
+ _g_ := getg()
+
+ _g_.m.locks++ // disable preemption because it can be holding p in a local var
+ gp := netpoll(false) // non-blocking
+ injectglist(gp)
+ add := needaddgcproc()
+ lock(&sched.lock)
+
+ procs := gomaxprocs
+ if newprocs != 0 {
+ procs = newprocs
+ newprocs = 0
+ }
+ p1 := procresize(procs)
+ sched.gcwaiting = 0
+ if sched.sysmonwait != 0 {
+ sched.sysmonwait = 0
+ notewakeup(&sched.sysmonnote)
+ }
+ unlock(&sched.lock)
+
+ for p1 != nil {
+ p := p1
+ p1 = p1.link.ptr()
+ if p.m != 0 {
+ mp := p.m.ptr()
+ p.m = 0
+ if mp.nextp != 0 {
+ throw("startTheWorld: inconsistent mp->nextp")
+ }
+ mp.nextp.set(p)
+ notewakeup(&mp.park)
+ } else {
+ // Start M to run P. Do not start another M below.
+ newm(nil, p)
+ add = false
+ }
+ }
+
+ // Wakeup an additional proc in case we have excessive runnable goroutines
+ // in local queues or in the global queue. If we don't, the proc will park itself.
+ // If we have lots of excessive work, resetspinning will unpark additional procs as necessary.
+ if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 {
+ wakep()
+ }
+
+ if add {
+ // If GC could have used another helper proc, start one now,
+ // in the hope that it will be available next time.
+ // It would have been even better to start it before the collection,
+ // but doing so requires allocating memory, so it's tricky to
+ // coordinate. This lazy approach works out in practice:
+ // we don't mind if the first couple gc rounds don't have quite
+ // the maximum number of procs.
+ newm(mhelpgc, nil)
+ }
+ _g_.m.locks--
+ if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
+ _g_.stackguard0 = stackPreempt
+ }
+}
+
+// Called to start an M.
+//go:nosplit
+func mstart() {
+ _g_ := getg()
+
+ if _g_.stack.lo == 0 {
+ // Initialize stack bounds from system stack.
+ // Cgo may have left stack size in stack.hi.
+ size := _g_.stack.hi
+ if size == 0 {
+ size = 8192 * stackGuardMultiplier
+ }
+ _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size)))
+ _g_.stack.lo = _g_.stack.hi - size + 1024
+ }
+ // Initialize stack guards so that we can start calling
+ // both Go and C functions with stack growth prologues.
+ _g_.stackguard0 = _g_.stack.lo + _StackGuard
+ _g_.stackguard1 = _g_.stackguard0
+ mstart1()
+}
+
+func mstart1() {
+ _g_ := getg()
+
+ if _g_ != _g_.m.g0 {
+ throw("bad runtimeĀ·mstart")
+ }
+
+ // Record top of stack for use by mcall.
+ // Once we call schedule we're never coming back,
+ // so other calls can reuse this stack space.
+ gosave(&_g_.m.g0.sched)
+ _g_.m.g0.sched.pc = ^uintptr(0) // make sure it is never used
+ asminit()
+ minit()
+
+ // Install signal handlers; after minit so that minit can
+ // prepare the thread to be able to handle the signals.
+ if _g_.m == &m0 {
+ // Create an extra M for callbacks on threads not created by Go.
+ if iscgo && !cgoHasExtraM {
+ cgoHasExtraM = true
+ newextram()
+ }
+ initsig()
+ }
+
+ if fn := _g_.m.mstartfn; fn != nil {
+ fn()
+ }
+
+ if _g_.m.helpgc != 0 {
+ _g_.m.helpgc = 0
+ stopm()
+ } else if _g_.m != &m0 {
+ acquirep(_g_.m.nextp.ptr())
+ _g_.m.nextp = 0
+ }
+ schedule()
+}
+
+// forEachP calls fn(p) for every P p when p reaches a GC safe point.
+// If a P is currently executing code, this will bring the P to a GC
+// safe point and execute fn on that P. If the P is not executing code
+// (it is idle or in a syscall), this will call fn(p) directly while
+// preventing the P from exiting its state. This does not ensure that
+// fn will run on every CPU executing Go code, but it acts as a global
+// memory barrier. GC uses this as a "ragged barrier."
+//
+// The caller must hold worldsema.
+func forEachP(fn func(*p)) {
+ mp := acquirem()
+ _p_ := getg().m.p.ptr()
+
+ lock(&sched.lock)
+ if sched.safePointWait != 0 {
+ throw("forEachP: sched.safePointWait != 0")
+ }
+ sched.safePointWait = gomaxprocs - 1
+ sched.safePointFn = fn
+
+ // Ask all Ps to run the safe point function.
+ for _, p := range allp[:gomaxprocs] {
+ if p != _p_ {
+ atomicstore(&p.runSafePointFn, 1)
+ }
+ }
+ preemptall()
+
+ // Any P entering _Pidle or _Psyscall from now on will observe
+ // p.runSafePointFn == 1 and will call runSafePointFn when
+ // changing its status to _Pidle/_Psyscall.
+
+ // Run safe point function for all idle Ps. sched.pidle will
+ // not change because we hold sched.lock.
+ for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() {
+ if cas(&p.runSafePointFn, 1, 0) {
+ fn(p)
+ sched.safePointWait--
+ }
+ }
+
+ wait := sched.safePointWait > 0
+ unlock(&sched.lock)
+
+ // Run fn for the current P.
+ fn(_p_)
+
+ // Force Ps currently in _Psyscall into _Pidle and hand them
+ // off to induce safe point function execution.
+ for i := 0; i < int(gomaxprocs); i++ {
+ p := allp[i]
+ s := p.status
+ if s == _Psyscall && p.runSafePointFn == 1 && cas(&p.status, s, _Pidle) {
+ if trace.enabled {
+ traceGoSysBlock(p)
+ traceProcStop(p)
+ }
+ p.syscalltick++
+ handoffp(p)
+ }
+ }
+
+ // Wait for remaining Ps to run fn.
+ if wait {
+ for {
+ // Wait for 100us, then try to re-preempt in
+ // case of any races.
+ if notetsleep(&sched.safePointNote, 100*1000) {
+ noteclear(&sched.safePointNote)
+ break
+ }
+ preemptall()
+ }
+ }
+ if sched.safePointWait != 0 {
+ throw("forEachP: not done")
+ }
+ for i := 0; i < int(gomaxprocs); i++ {
+ p := allp[i]
+ if p.runSafePointFn != 0 {
+ throw("forEachP: P did not run fn")
+ }
+ }
+
+ lock(&sched.lock)
+ sched.safePointFn = nil
+ unlock(&sched.lock)
+ releasem(mp)
+}
+
+// runSafePointFn runs the safe point function, if any, for this P.
+// This should be called like
+//
+// if getg().m.p.runSafePointFn != 0 {
+// runSafePointFn()
+// }
+//
+// runSafePointFn must be checked on any transition in to _Pidle or
+// _Psyscall to avoid a race where forEachP sees that the P is running
+// just before the P goes into _Pidle/_Psyscall and neither forEachP
+// nor the P run the safe-point function.
+func runSafePointFn() {
+ p := getg().m.p.ptr()
+ // Resolve the race between forEachP running the safe-point
+ // function on this P's behalf and this P running the
+ // safe-point function directly.
+ if !cas(&p.runSafePointFn, 1, 0) {
+ return
+ }
+ sched.safePointFn(p)
+ lock(&sched.lock)
+ sched.safePointWait--
+ if sched.safePointWait == 0 {
+ notewakeup(&sched.safePointNote)
+ }
+ unlock(&sched.lock)
+}
+
+// When running with cgo, we call _cgo_thread_start
+// to start threads for us so that we can play nicely with
+// foreign code.
+var cgoThreadStart unsafe.Pointer
+
+type cgothreadstart struct {
+ g guintptr
+ tls *uint64
+ fn unsafe.Pointer
+}
+
+// Allocate a new m unassociated with any thread.
+// Can use p for allocation context if needed.
+// fn is recorded as the new m's m.mstartfn.
+func allocm(_p_ *p, fn func()) *m {
+ _g_ := getg()
+ _g_.m.locks++ // disable GC because it can be called from sysmon
+ if _g_.m.p == 0 {
+ acquirep(_p_) // temporarily borrow p for mallocs in this function
+ }
+ mp := new(m)
+ mp.mstartfn = fn
+ mcommoninit(mp)
+
+ // In case of cgo or Solaris, pthread_create will make us a stack.
+ // Windows and Plan 9 will layout sched stack on OS stack.
+ if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" {
+ mp.g0 = malg(-1)
+ } else {
+ mp.g0 = malg(8192 * stackGuardMultiplier)
+ }
+ mp.g0.m = mp
+
+ if _p_ == _g_.m.p.ptr() {
+ releasep()
+ }
+ _g_.m.locks--
+ if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
+ _g_.stackguard0 = stackPreempt
+ }
+
+ return mp
+}
+
+// needm is called when a cgo callback happens on a
+// thread without an m (a thread not created by Go).
+// In this case, needm is expected to find an m to use
+// and return with m, g initialized correctly.
+// Since m and g are not set now (likely nil, but see below)
+// needm is limited in what routines it can call. In particular
+// it can only call nosplit functions (textflag 7) and cannot
+// do any scheduling that requires an m.
+//
+// In order to avoid needing heavy lifting here, we adopt
+// the following strategy: there is a stack of available m's
+// that can be stolen. Using compare-and-swap
+// to pop from the stack has ABA races, so we simulate
+// a lock by doing an exchange (via casp) to steal the stack
+// head and replace the top pointer with MLOCKED (1).
+// This serves as a simple spin lock that we can use even
+// without an m. The thread that locks the stack in this way
+// unlocks the stack by storing a valid stack head pointer.
+//
+// In order to make sure that there is always an m structure
+// available to be stolen, we maintain the invariant that there
+// is always one more than needed. At the beginning of the
+// program (if cgo is in use) the list is seeded with a single m.
+// If needm finds that it has taken the last m off the list, its job
+// is - once it has installed its own m so that it can do things like
+// allocate memory - to create a spare m and put it on the list.
+//
+// Each of these extra m's also has a g0 and a curg that are
+// pressed into service as the scheduling stack and current
+// goroutine for the duration of the cgo callback.
+//
+// When the callback is done with the m, it calls dropm to
+// put the m back on the list.
+//go:nosplit
+func needm(x byte) {
+ if iscgo && !cgoHasExtraM {
+ // Can happen if C/C++ code calls Go from a global ctor.
+ // Can not throw, because scheduler is not initialized yet.
+ write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback)))
+ exit(1)
+ }
+
+ // Lock extra list, take head, unlock popped list.
+ // nilokay=false is safe here because of the invariant above,
+ // that the extra list always contains or will soon contain
+ // at least one m.
+ mp := lockextra(false)
+
+ // Set needextram when we've just emptied the list,
+ // so that the eventual call into cgocallbackg will
+ // allocate a new m for the extra list. We delay the
+ // allocation until then so that it can be done
+ // after exitsyscall makes sure it is okay to be
+ // running at all (that is, there's no garbage collection
+ // running right now).
+ mp.needextram = mp.schedlink == 0
+ unlockextra(mp.schedlink.ptr())
+
+ // Install g (= m->g0) and set the stack bounds
+ // to match the current stack. We don't actually know
+ // how big the stack is, like we don't know how big any
+ // scheduling stack is, but we assume there's at least 32 kB,
+ // which is more than enough for us.
+ setg(mp.g0)
+ _g_ := getg()
+ _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&x))) + 1024
+ _g_.stack.lo = uintptr(noescape(unsafe.Pointer(&x))) - 32*1024
+ _g_.stackguard0 = _g_.stack.lo + _StackGuard
+
+ msigsave(mp)
+ // Initialize this thread to use the m.
+ asminit()
+ minit()
+}
+
+var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n")
+
+// newextram allocates an m and puts it on the extra list.
+// It is called with a working local m, so that it can do things
+// like call schedlock and allocate.
+func newextram() {
+ // Create extra goroutine locked to extra m.
+ // The goroutine is the context in which the cgo callback will run.
+ // The sched.pc will never be returned to, but setting it to
+ // goexit makes clear to the traceback routines where
+ // the goroutine stack ends.
+ mp := allocm(nil, nil)
+ gp := malg(4096)
+ gp.sched.pc = funcPC(goexit) + _PCQuantum
+ gp.sched.sp = gp.stack.hi
+ gp.sched.sp -= 4 * regSize // extra space in case of reads slightly beyond frame
+ gp.sched.lr = 0
+ gp.sched.g = guintptr(unsafe.Pointer(gp))
+ gp.syscallpc = gp.sched.pc
+ gp.syscallsp = gp.sched.sp
+ gp.stktopsp = gp.sched.sp
+ // malg returns status as Gidle, change to Gsyscall before adding to allg
+ // where GC will see it.
+ casgstatus(gp, _Gidle, _Gsyscall)
+ gp.m = mp
+ mp.curg = gp
+ mp.locked = _LockInternal
+ mp.lockedg = gp
+ gp.lockedm = mp
+ gp.goid = int64(xadd64(&sched.goidgen, 1))
+ if raceenabled {
+ gp.racectx = racegostart(funcPC(newextram))
+ }
+ // put on allg for garbage collector
+ allgadd(gp)
+
+ // Add m to the extra list.
+ mnext := lockextra(true)
+ mp.schedlink.set(mnext)
+ unlockextra(mp)
+}
+
+// dropm is called when a cgo callback has called needm but is now
+// done with the callback and returning back into the non-Go thread.
+// It puts the current m back onto the extra list.
+//
+// The main expense here is the call to signalstack to release the
+// m's signal stack, and then the call to needm on the next callback
+// from this thread. It is tempting to try to save the m for next time,
+// which would eliminate both these costs, but there might not be
+// a next time: the current thread (which Go does not control) might exit.
+// If we saved the m for that thread, there would be an m leak each time
+// such a thread exited. Instead, we acquire and release an m on each
+// call. These should typically not be scheduling operations, just a few
+// atomics, so the cost should be small.
+//
+// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
+// variable using pthread_key_create. Unlike the pthread keys we already use
+// on OS X, this dummy key would never be read by Go code. It would exist
+// only so that we could register at thread-exit-time destructor.
+// That destructor would put the m back onto the extra list.
+// This is purely a performance optimization. The current version,
+// in which dropm happens on each cgo call, is still correct too.
+// We may have to keep the current version on systems with cgo
+// but without pthreads, like Windows.
+func dropm() {
+ // Undo whatever initialization minit did during needm.
+ unminit()
+
+ // Clear m and g, and return m to the extra list.
+ // After the call to setg we can only call nosplit functions
+ // with no pointer manipulation.
+ mp := getg().m
+ mnext := lockextra(true)
+ mp.schedlink.set(mnext)
+
+ setg(nil)
+ unlockextra(mp)
+}
+
+var extram uintptr
+
+// lockextra locks the extra list and returns the list head.
+// The caller must unlock the list by storing a new list head
+// to extram. If nilokay is true, then lockextra will
+// return a nil list head if that's what it finds. If nilokay is false,
+// lockextra will keep waiting until the list head is no longer nil.
+//go:nosplit
+func lockextra(nilokay bool) *m {
+ const locked = 1
+
+ for {
+ old := atomicloaduintptr(&extram)
+ if old == locked {
+ yield := osyield
+ yield()
+ continue
+ }
+ if old == 0 && !nilokay {
+ usleep(1)
+ continue
+ }
+ if casuintptr(&extram, old, locked) {
+ return (*m)(unsafe.Pointer(old))
+ }
+ yield := osyield
+ yield()
+ continue
+ }
+}
+
+//go:nosplit
+func unlockextra(mp *m) {
+ atomicstoreuintptr(&extram, uintptr(unsafe.Pointer(mp)))
+}
+
+// Create a new m. It will start off with a call to fn, or else the scheduler.
+// fn needs to be static and not a heap allocated closure.
+// May run with m.p==nil, so write barriers are not allowed.
+//go:nowritebarrier
+func newm(fn func(), _p_ *p) {
+ mp := allocm(_p_, fn)
+ mp.nextp.set(_p_)
+ msigsave(mp)
+ if iscgo {
+ var ts cgothreadstart
+ if _cgo_thread_start == nil {
+ throw("_cgo_thread_start missing")
+ }
+ ts.g.set(mp.g0)
+ ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0]))
+ ts.fn = unsafe.Pointer(funcPC(mstart))
+ asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts))
+ return
+ }
+ newosproc(mp, unsafe.Pointer(mp.g0.stack.hi))
+}
+
+// Stops execution of the current m until new work is available.
+// Returns with acquired P.
+func stopm() {
+ _g_ := getg()
+
+ if _g_.m.locks != 0 {
+ throw("stopm holding locks")
+ }
+ if _g_.m.p != 0 {
+ throw("stopm holding p")
+ }
+ if _g_.m.spinning {
+ _g_.m.spinning = false
+ xadd(&sched.nmspinning, -1)
+ }
+
+retry:
+ lock(&sched.lock)
+ mput(_g_.m)
+ unlock(&sched.lock)
+ notesleep(&_g_.m.park)
+ noteclear(&_g_.m.park)
+ if _g_.m.helpgc != 0 {
+ gchelper()
+ _g_.m.helpgc = 0
+ _g_.m.mcache = nil
+ _g_.m.p = 0
+ goto retry
+ }
+ acquirep(_g_.m.nextp.ptr())
+ _g_.m.nextp = 0
+}
+
+func mspinning() {
+ gp := getg()
+ if !runqempty(gp.m.nextp.ptr()) {
+ // Something (presumably the GC) was readied while the
+ // runtime was starting up this M, so the M is no
+ // longer spinning.
+ if int32(xadd(&sched.nmspinning, -1)) < 0 {
+ throw("mspinning: nmspinning underflowed")
+ }
+ } else {
+ gp.m.spinning = true
+ }
+}
+
+// Schedules some M to run the p (creates an M if necessary).
+// If p==nil, tries to get an idle P, if no idle P's does nothing.
+// May run with m.p==nil, so write barriers are not allowed.
+//go:nowritebarrier
+func startm(_p_ *p, spinning bool) {
+ lock(&sched.lock)
+ if _p_ == nil {
+ _p_ = pidleget()
+ if _p_ == nil {
+ unlock(&sched.lock)
+ if spinning {
+ xadd(&sched.nmspinning, -1)
+ }
+ return
+ }
+ }
+ mp := mget()
+ unlock(&sched.lock)
+ if mp == nil {
+ var fn func()
+ if spinning {
+ fn = mspinning
+ }
+ newm(fn, _p_)
+ return
+ }
+ if mp.spinning {
+ throw("startm: m is spinning")
+ }
+ if mp.nextp != 0 {
+ throw("startm: m has p")
+ }
+ if spinning && !runqempty(_p_) {
+ throw("startm: p has runnable gs")
+ }
+ mp.spinning = spinning
+ mp.nextp.set(_p_)
+ notewakeup(&mp.park)
+}
+
+// Hands off P from syscall or locked M.
+// Always runs without a P, so write barriers are not allowed.
+//go:nowritebarrier
+func handoffp(_p_ *p) {
+ // if it has local work, start it straight away
+ if !runqempty(_p_) || sched.runqsize != 0 {
+ startm(_p_, false)
+ return
+ }
+ // no local work, check that there are no spinning/idle M's,
+ // otherwise our help is not required
+ if atomicload(&sched.nmspinning)+atomicload(&sched.npidle) == 0 && cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
+ startm(_p_, true)
+ return
+ }
+ lock(&sched.lock)
+ if sched.gcwaiting != 0 {
+ _p_.status = _Pgcstop
+ sched.stopwait--
+ if sched.stopwait == 0 {
+ notewakeup(&sched.stopnote)
+ }
+ unlock(&sched.lock)
+ return
+ }
+ if _p_.runSafePointFn != 0 && cas(&_p_.runSafePointFn, 1, 0) {
+ sched.safePointFn(_p_)
+ sched.safePointWait--
+ if sched.safePointWait == 0 {
+ notewakeup(&sched.safePointNote)
+ }
+ }
+ if sched.runqsize != 0 {
+ unlock(&sched.lock)
+ startm(_p_, false)
+ return
+ }
+ // If this is the last running P and nobody is polling network,
+ // need to wakeup another M to poll network.
+ if sched.npidle == uint32(gomaxprocs-1) && atomicload64(&sched.lastpoll) != 0 {
+ unlock(&sched.lock)
+ startm(_p_, false)
+ return
+ }
+ pidleput(_p_)
+ unlock(&sched.lock)
+}
+
+// Tries to add one more P to execute G's.
+// Called when a G is made runnable (newproc, ready).
+func wakep() {
+ // be conservative about spinning threads
+ if !cas(&sched.nmspinning, 0, 1) {
+ return
+ }
+ startm(nil, true)
+}
+
+// Stops execution of the current m that is locked to a g until the g is runnable again.
+// Returns with acquired P.
+func stoplockedm() {
+ _g_ := getg()
+
+ if _g_.m.lockedg == nil || _g_.m.lockedg.lockedm != _g_.m {
+ throw("stoplockedm: inconsistent locking")
+ }
+ if _g_.m.p != 0 {
+ // Schedule another M to run this p.
+ _p_ := releasep()
+ handoffp(_p_)
+ }
+ incidlelocked(1)
+ // Wait until another thread schedules lockedg again.
+ notesleep(&_g_.m.park)
+ noteclear(&_g_.m.park)
+ status := readgstatus(_g_.m.lockedg)
+ if status&^_Gscan != _Grunnable {
+ print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n")
+ dumpgstatus(_g_)
+ throw("stoplockedm: not runnable")
+ }
+ acquirep(_g_.m.nextp.ptr())
+ _g_.m.nextp = 0
+}
+
+// Schedules the locked m to run the locked gp.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrier
+func startlockedm(gp *g) {
+ _g_ := getg()
+
+ mp := gp.lockedm
+ if mp == _g_.m {
+ throw("startlockedm: locked to me")
+ }
+ if mp.nextp != 0 {
+ throw("startlockedm: m has p")
+ }
+ // directly handoff current P to the locked m
+ incidlelocked(-1)
+ _p_ := releasep()
+ mp.nextp.set(_p_)
+ notewakeup(&mp.park)
+ stopm()
+}
+
+// Stops the current m for stopTheWorld.
+// Returns when the world is restarted.
+func gcstopm() {
+ _g_ := getg()
+
+ if sched.gcwaiting == 0 {
+ throw("gcstopm: not waiting for gc")
+ }
+ if _g_.m.spinning {
+ _g_.m.spinning = false
+ xadd(&sched.nmspinning, -1)
+ }
+ _p_ := releasep()
+ lock(&sched.lock)
+ _p_.status = _Pgcstop
+ sched.stopwait--
+ if sched.stopwait == 0 {
+ notewakeup(&sched.stopnote)
+ }
+ unlock(&sched.lock)
+ stopm()
+}
+
+// Schedules gp to run on the current M.
+// If inheritTime is true, gp inherits the remaining time in the
+// current time slice. Otherwise, it starts a new time slice.
+// Never returns.
+func execute(gp *g, inheritTime bool) {
+ _g_ := getg()
+
+ casgstatus(gp, _Grunnable, _Grunning)
+ gp.waitsince = 0
+ gp.preempt = false
+ gp.stackguard0 = gp.stack.lo + _StackGuard
+ if !inheritTime {
+ _g_.m.p.ptr().schedtick++
+ }
+ _g_.m.curg = gp
+ gp.m = _g_.m
+
+ // Check whether the profiler needs to be turned on or off.
+ hz := sched.profilehz
+ if _g_.m.profilehz != hz {
+ resetcpuprofiler(hz)
+ }
+
+ if trace.enabled {
+ // GoSysExit has to happen when we have a P, but before GoStart.
+ // So we emit it here.
+ if gp.syscallsp != 0 && gp.sysblocktraced {
+ // Since gp.sysblocktraced is true, we must emit an event.
+ // There is a race between the code that initializes sysexitseq
+ // and sysexitticks (in exitsyscall, which runs without a P,
+ // and therefore is not stopped with the rest of the world)
+ // and the code that initializes a new trace.
+ // The recorded sysexitseq and sysexitticks must therefore
+ // be treated as "best effort". If they are valid for this trace,
+ // then great, use them for greater accuracy.
+ // But if they're not valid for this trace, assume that the
+ // trace was started after the actual syscall exit (but before
+ // we actually managed to start the goroutine, aka right now),
+ // and assign a fresh time stamp to keep the log consistent.
+ seq, ts := gp.sysexitseq, gp.sysexitticks
+ if seq == 0 || int64(seq)-int64(trace.seqStart) < 0 {
+ seq, ts = tracestamp()
+ }
+ traceGoSysExit(seq, ts)
+ }
+ traceGoStart()
+ }
+
+ gogo(&gp.sched)
+}
+
+// Finds a runnable goroutine to execute.
+// Tries to steal from other P's, get g from global queue, poll network.
+func findrunnable() (gp *g, inheritTime bool) {
+ _g_ := getg()
+
+top:
+ if sched.gcwaiting != 0 {
+ gcstopm()
+ goto top
+ }
+ if _g_.m.p.ptr().runSafePointFn != 0 {
+ runSafePointFn()
+ }
+ if fingwait && fingwake {
+ if gp := wakefing(); gp != nil {
+ ready(gp, 0)
+ }
+ }
+
+ // local runq
+ if gp, inheritTime := runqget(_g_.m.p.ptr()); gp != nil {
+ return gp, inheritTime
+ }
+
+ // global runq
+ if sched.runqsize != 0 {
+ lock(&sched.lock)
+ gp := globrunqget(_g_.m.p.ptr(), 0)
+ unlock(&sched.lock)
+ if gp != nil {
+ return gp, false
+ }
+ }
+
+ // Poll network.
+ // This netpoll is only an optimization before we resort to stealing.
+ // We can safely skip it if there a thread blocked in netpoll already.
+ // If there is any kind of logical race with that blocked thread
+ // (e.g. it has already returned from netpoll, but does not set lastpoll yet),
+ // this thread will do blocking netpoll below anyway.
+ if netpollinited() && sched.lastpoll != 0 {
+ if gp := netpoll(false); gp != nil { // non-blocking
+ // netpoll returns list of goroutines linked by schedlink.
+ injectglist(gp.schedlink.ptr())
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ if trace.enabled {
+ traceGoUnpark(gp, 0)
+ }
+ return gp, false
+ }
+ }
+
+ // If number of spinning M's >= number of busy P's, block.
+ // This is necessary to prevent excessive CPU consumption
+ // when GOMAXPROCS>>1 but the program parallelism is low.
+ if !_g_.m.spinning && 2*atomicload(&sched.nmspinning) >= uint32(gomaxprocs)-atomicload(&sched.npidle) { // TODO: fast atomic
+ goto stop
+ }
+ if !_g_.m.spinning {
+ _g_.m.spinning = true
+ xadd(&sched.nmspinning, 1)
+ }
+ // random steal from other P's
+ for i := 0; i < int(4*gomaxprocs); i++ {
+ if sched.gcwaiting != 0 {
+ goto top
+ }
+ _p_ := allp[fastrand1()%uint32(gomaxprocs)]
+ var gp *g
+ if _p_ == _g_.m.p.ptr() {
+ gp, _ = runqget(_p_)
+ } else {
+ stealRunNextG := i > 2*int(gomaxprocs) // first look for ready queues with more than 1 g
+ gp = runqsteal(_g_.m.p.ptr(), _p_, stealRunNextG)
+ }
+ if gp != nil {
+ return gp, false
+ }
+ }
+
+stop:
+
+ // We have nothing to do. If we're in the GC mark phase and can
+ // safely scan and blacken objects, run idle-time marking
+ // rather than give up the P.
+ if _p_ := _g_.m.p.ptr(); gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != nil && gcMarkWorkAvailable(_p_) {
+ _p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
+ gp := _p_.gcBgMarkWorker
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ if trace.enabled {
+ traceGoUnpark(gp, 0)
+ }
+ return gp, false
+ }
+
+ // return P and block
+ lock(&sched.lock)
+ if sched.gcwaiting != 0 || _g_.m.p.ptr().runSafePointFn != 0 {
+ unlock(&sched.lock)
+ goto top
+ }
+ if sched.runqsize != 0 {
+ gp := globrunqget(_g_.m.p.ptr(), 0)
+ unlock(&sched.lock)
+ return gp, false
+ }
+ _p_ := releasep()
+ pidleput(_p_)
+ unlock(&sched.lock)
+ if _g_.m.spinning {
+ _g_.m.spinning = false
+ xadd(&sched.nmspinning, -1)
+ }
+
+ // check all runqueues once again
+ for i := 0; i < int(gomaxprocs); i++ {
+ _p_ := allp[i]
+ if _p_ != nil && !runqempty(_p_) {
+ lock(&sched.lock)
+ _p_ = pidleget()
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ goto top
+ }
+ break
+ }
+ }
+
+ // poll network
+ if netpollinited() && xchg64(&sched.lastpoll, 0) != 0 {
+ if _g_.m.p != 0 {
+ throw("findrunnable: netpoll with p")
+ }
+ if _g_.m.spinning {
+ throw("findrunnable: netpoll with spinning")
+ }
+ gp := netpoll(true) // block until new work is available
+ atomicstore64(&sched.lastpoll, uint64(nanotime()))
+ if gp != nil {
+ lock(&sched.lock)
+ _p_ = pidleget()
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ injectglist(gp.schedlink.ptr())
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ if trace.enabled {
+ traceGoUnpark(gp, 0)
+ }
+ return gp, false
+ }
+ injectglist(gp)
+ }
+ }
+ stopm()
+ goto top
+}
+
+func resetspinning() {
+ _g_ := getg()
+
+ var nmspinning uint32
+ if _g_.m.spinning {
+ _g_.m.spinning = false
+ nmspinning = xadd(&sched.nmspinning, -1)
+ if int32(nmspinning) < 0 {
+ throw("findrunnable: negative nmspinning")
+ }
+ } else {
+ nmspinning = atomicload(&sched.nmspinning)
+ }
+
+ // M wakeup policy is deliberately somewhat conservative (see nmspinning handling),
+ // so see if we need to wakeup another P here.
+ if nmspinning == 0 && atomicload(&sched.npidle) > 0 {
+ wakep()
+ }
+}
+
+// Injects the list of runnable G's into the scheduler.
+// Can run concurrently with GC.
+func injectglist(glist *g) {
+ if glist == nil {
+ return
+ }
+ if trace.enabled {
+ for gp := glist; gp != nil; gp = gp.schedlink.ptr() {
+ traceGoUnpark(gp, 0)
+ }
+ }
+ lock(&sched.lock)
+ var n int
+ for n = 0; glist != nil; n++ {
+ gp := glist
+ glist = gp.schedlink.ptr()
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ globrunqput(gp)
+ }
+ unlock(&sched.lock)
+ for ; n != 0 && sched.npidle != 0; n-- {
+ startm(nil, false)
+ }
+}
+
+// One round of scheduler: find a runnable goroutine and execute it.
+// Never returns.
+func schedule() {
+ _g_ := getg()
+
+ if _g_.m.locks != 0 {
+ throw("schedule: holding locks")
+ }
+
+ if _g_.m.lockedg != nil {
+ stoplockedm()
+ execute(_g_.m.lockedg, false) // Never returns.
+ }
+
+top:
+ if sched.gcwaiting != 0 {
+ gcstopm()
+ goto top
+ }
+ if _g_.m.p.ptr().runSafePointFn != 0 {
+ runSafePointFn()
+ }
+
+ var gp *g
+ var inheritTime bool
+ if trace.enabled || trace.shutdown {
+ gp = traceReader()
+ if gp != nil {
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ traceGoUnpark(gp, 0)
+ resetspinning()
+ }
+ }
+ if gp == nil && gcBlackenEnabled != 0 {
+ gp = gcController.findRunnableGCWorker(_g_.m.p.ptr())
+ if gp != nil {
+ resetspinning()
+ }
+ }
+ if gp == nil {
+ // Check the global runnable queue once in a while to ensure fairness.
+ // Otherwise two goroutines can completely occupy the local runqueue
+ // by constantly respawning each other.
+ if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
+ lock(&sched.lock)
+ gp = globrunqget(_g_.m.p.ptr(), 1)
+ unlock(&sched.lock)
+ if gp != nil {
+ resetspinning()
+ }
+ }
+ }
+ if gp == nil {
+ gp, inheritTime = runqget(_g_.m.p.ptr())
+ if gp != nil && _g_.m.spinning {
+ throw("schedule: spinning with local work")
+ }
+ }
+ if gp == nil {
+ gp, inheritTime = findrunnable() // blocks until work is available
+ resetspinning()
+ }
+
+ if gp.lockedm != nil {
+ // Hands off own p to the locked m,
+ // then blocks waiting for a new p.
+ startlockedm(gp)
+ goto top
+ }
+
+ execute(gp, inheritTime)
+}
+
+// dropg removes the association between m and the current goroutine m->curg (gp for short).
+// Typically a caller sets gp's status away from Grunning and then
+// immediately calls dropg to finish the job. The caller is also responsible
+// for arranging that gp will be restarted using ready at an
+// appropriate time. After calling dropg and arranging for gp to be
+// readied later, the caller can do other work but eventually should
+// call schedule to restart the scheduling of goroutines on this m.
+func dropg() {
+ _g_ := getg()
+
+ if _g_.m.lockedg == nil {
+ _g_.m.curg.m = nil
+ _g_.m.curg = nil
+ }
+}
+
+func parkunlock_c(gp *g, lock unsafe.Pointer) bool {
+ unlock((*mutex)(lock))
+ return true
+}
+
+// park continuation on g0.
+func park_m(gp *g) {
+ _g_ := getg()
+
+ if trace.enabled {
+ traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip, gp)
+ }
+
+ casgstatus(gp, _Grunning, _Gwaiting)
+ dropg()
+
+ if _g_.m.waitunlockf != nil {
+ fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf))
+ ok := fn(gp, _g_.m.waitlock)
+ _g_.m.waitunlockf = nil
+ _g_.m.waitlock = nil
+ if !ok {
+ if trace.enabled {
+ traceGoUnpark(gp, 2)
+ }
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ execute(gp, true) // Schedule it back, never returns.
+ }
+ }
+ schedule()
+}
+
+func goschedImpl(gp *g) {
+ status := readgstatus(gp)
+ if status&^_Gscan != _Grunning {
+ dumpgstatus(gp)
+ throw("bad g status")
+ }
+ casgstatus(gp, _Grunning, _Grunnable)
+ dropg()
+ lock(&sched.lock)
+ globrunqput(gp)
+ unlock(&sched.lock)
+
+ schedule()
+}
+
+// Gosched continuation on g0.
+func gosched_m(gp *g) {
+ if trace.enabled {
+ traceGoSched()
+ }
+ goschedImpl(gp)
+}
+
+func gopreempt_m(gp *g) {
+ if trace.enabled {
+ traceGoPreempt()
+ }
+ goschedImpl(gp)
+}
+
+// Finishes execution of the current goroutine.
+func goexit1() {
+ if raceenabled {
+ racegoend()
+ }
+ if trace.enabled {
+ traceGoEnd()
+ }
+ mcall(goexit0)
+}
+
+// goexit continuation on g0.
+func goexit0(gp *g) {
+ _g_ := getg()
+
+ casgstatus(gp, _Grunning, _Gdead)
+ gp.m = nil
+ gp.lockedm = nil
+ _g_.m.lockedg = nil
+ gp.paniconfault = false
+ gp._defer = nil // should be true already but just in case.
+ gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
+ gp.writebuf = nil
+ gp.waitreason = ""
+ gp.param = nil
+
+ dropg()
+
+ if _g_.m.locked&^_LockExternal != 0 {
+ print("invalid m->locked = ", _g_.m.locked, "\n")
+ throw("internal lockOSThread error")
+ }
+ _g_.m.locked = 0
+ gfput(_g_.m.p.ptr(), gp)
+ schedule()
+}
+
+//go:nosplit
+//go:nowritebarrier
+func save(pc, sp uintptr) {
+ _g_ := getg()
+
+ _g_.sched.pc = pc
+ _g_.sched.sp = sp
+ _g_.sched.lr = 0
+ _g_.sched.ret = 0
+ _g_.sched.ctxt = nil
+ _g_.sched.g = guintptr(unsafe.Pointer(_g_))
+}
+
+// The goroutine g is about to enter a system call.
+// Record that it's not using the cpu anymore.
+// This is called only from the go syscall library and cgocall,
+// not from the low-level system calls used by the runtime.
+//
+// Entersyscall cannot split the stack: the gosave must
+// make g->sched refer to the caller's stack segment, because
+// entersyscall is going to return immediately after.
+//
+// Nothing entersyscall calls can split the stack either.
+// We cannot safely move the stack during an active call to syscall,
+// because we do not know which of the uintptr arguments are
+// really pointers (back into the stack).
+// In practice, this means that we make the fast path run through
+// entersyscall doing no-split things, and the slow path has to use systemstack
+// to run bigger things on the system stack.
+//
+// reentersyscall is the entry point used by cgo callbacks, where explicitly
+// saved SP and PC are restored. This is needed when exitsyscall will be called
+// from a function further up in the call stack than the parent, as g->syscallsp
+// must always point to a valid stack frame. entersyscall below is the normal
+// entry point for syscalls, which obtains the SP and PC from the caller.
+//
+// Syscall tracing:
+// At the start of a syscall we emit traceGoSysCall to capture the stack trace.
+// If the syscall does not block, that is it, we do not emit any other events.
+// If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock;
+// when syscall returns we emit traceGoSysExit and when the goroutine starts running
+// (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart.
+// To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock,
+// we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick),
+// whoever emits traceGoSysBlock increments p.syscalltick afterwards;
+// and we wait for the increment before emitting traceGoSysExit.
+// Note that the increment is done even if tracing is not enabled,
+// because tracing can be enabled in the middle of syscall. We don't want the wait to hang.
+//
+//go:nosplit
+func reentersyscall(pc, sp uintptr) {
+ _g_ := getg()
+
+ // Disable preemption because during this function g is in Gsyscall status,
+ // but can have inconsistent g->sched, do not let GC observe it.
+ _g_.m.locks++
+
+ // Entersyscall must not call any function that might split/grow the stack.
+ // (See details in comment above.)
+ // Catch calls that might, by replacing the stack guard with something that
+ // will trip any stack check and leaving a flag to tell newstack to die.
+ _g_.stackguard0 = stackPreempt
+ _g_.throwsplit = true
+
+ // Leave SP around for GC and traceback.
+ save(pc, sp)
+ _g_.syscallsp = sp
+ _g_.syscallpc = pc
+ casgstatus(_g_, _Grunning, _Gsyscall)
+ if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
+ systemstack(func() {
+ print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
+ throw("entersyscall")
+ })
+ }
+
+ if trace.enabled {
+ systemstack(traceGoSysCall)
+ // systemstack itself clobbers g.sched.{pc,sp} and we might
+ // need them later when the G is genuinely blocked in a
+ // syscall
+ save(pc, sp)
+ }
+
+ if atomicload(&sched.sysmonwait) != 0 { // TODO: fast atomic
+ systemstack(entersyscall_sysmon)
+ save(pc, sp)
+ }
+
+ if _g_.m.p.ptr().runSafePointFn != 0 {
+ // runSafePointFn may stack split if run on this stack
+ systemstack(runSafePointFn)
+ save(pc, sp)
+ }
+
+ _g_.m.syscalltick = _g_.m.p.ptr().syscalltick
+ _g_.sysblocktraced = true
+ _g_.m.mcache = nil
+ _g_.m.p.ptr().m = 0
+ atomicstore(&_g_.m.p.ptr().status, _Psyscall)
+ if sched.gcwaiting != 0 {
+ systemstack(entersyscall_gcwait)
+ save(pc, sp)
+ }
+
+ // Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched).
+ // We set _StackGuard to StackPreempt so that first split stack check calls morestack.
+ // Morestack detects this case and throws.
+ _g_.stackguard0 = stackPreempt
+ _g_.m.locks--
+}
+
+// Standard syscall entry used by the go syscall library and normal cgo calls.
+//go:nosplit
+func entersyscall(dummy int32) {
+ reentersyscall(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
+}
+
+func entersyscall_sysmon() {
+ lock(&sched.lock)
+ if atomicload(&sched.sysmonwait) != 0 {
+ atomicstore(&sched.sysmonwait, 0)
+ notewakeup(&sched.sysmonnote)
+ }
+ unlock(&sched.lock)
+}
+
+func entersyscall_gcwait() {
+ _g_ := getg()
+ _p_ := _g_.m.p.ptr()
+
+ lock(&sched.lock)
+ if sched.stopwait > 0 && cas(&_p_.status, _Psyscall, _Pgcstop) {
+ if trace.enabled {
+ traceGoSysBlock(_p_)
+ traceProcStop(_p_)
+ }
+ _p_.syscalltick++
+ if sched.stopwait--; sched.stopwait == 0 {
+ notewakeup(&sched.stopnote)
+ }
+ }
+ unlock(&sched.lock)
+}
+
+// The same as entersyscall(), but with a hint that the syscall is blocking.
+//go:nosplit
+func entersyscallblock(dummy int32) {
+ _g_ := getg()
+
+ _g_.m.locks++ // see comment in entersyscall
+ _g_.throwsplit = true
+ _g_.stackguard0 = stackPreempt // see comment in entersyscall
+ _g_.m.syscalltick = _g_.m.p.ptr().syscalltick
+ _g_.sysblocktraced = true
+ _g_.m.p.ptr().syscalltick++
+
+ // Leave SP around for GC and traceback.
+ pc := getcallerpc(unsafe.Pointer(&dummy))
+ sp := getcallersp(unsafe.Pointer(&dummy))
+ save(pc, sp)
+ _g_.syscallsp = _g_.sched.sp
+ _g_.syscallpc = _g_.sched.pc
+ if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
+ sp1 := sp
+ sp2 := _g_.sched.sp
+ sp3 := _g_.syscallsp
+ systemstack(func() {
+ print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
+ throw("entersyscallblock")
+ })
+ }
+ casgstatus(_g_, _Grunning, _Gsyscall)
+ if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
+ systemstack(func() {
+ print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
+ throw("entersyscallblock")
+ })
+ }
+
+ systemstack(entersyscallblock_handoff)
+
+ // Resave for traceback during blocked call.
+ save(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
+
+ _g_.m.locks--
+}
+
+func entersyscallblock_handoff() {
+ if trace.enabled {
+ traceGoSysCall()
+ traceGoSysBlock(getg().m.p.ptr())
+ }
+ handoffp(releasep())
+}
+
+// The goroutine g exited its system call.
+// Arrange for it to run on a cpu again.
+// This is called only from the go syscall library, not
+// from the low-level system calls used by the
+//go:nosplit
+func exitsyscall(dummy int32) {
+ _g_ := getg()
+
+ _g_.m.locks++ // see comment in entersyscall
+ if getcallersp(unsafe.Pointer(&dummy)) > _g_.syscallsp {
+ throw("exitsyscall: syscall frame is no longer valid")
+ }
+
+ _g_.waitsince = 0
+ oldp := _g_.m.p.ptr()
+ if exitsyscallfast() {
+ if _g_.m.mcache == nil {
+ throw("lost mcache")
+ }
+ if trace.enabled {
+ if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
+ systemstack(traceGoStart)
+ }
+ }
+ // There's a cpu for us, so we can run.
+ _g_.m.p.ptr().syscalltick++
+ // We need to cas the status and scan before resuming...
+ casgstatus(_g_, _Gsyscall, _Grunning)
+
+ // Garbage collector isn't running (since we are),
+ // so okay to clear syscallsp.
+ _g_.syscallsp = 0
+ _g_.m.locks--
+ if _g_.preempt {
+ // restore the preemption request in case we've cleared it in newstack
+ _g_.stackguard0 = stackPreempt
+ } else {
+ // otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock
+ _g_.stackguard0 = _g_.stack.lo + _StackGuard
+ }
+ _g_.throwsplit = false
+ return
+ }
+
+ _g_.sysexitticks = 0
+ _g_.sysexitseq = 0
+ if trace.enabled {
+ // Wait till traceGoSysBlock event is emitted.
+ // This ensures consistency of the trace (the goroutine is started after it is blocked).
+ for oldp != nil && oldp.syscalltick == _g_.m.syscalltick {
+ osyield()
+ }
+ // We can't trace syscall exit right now because we don't have a P.
+ // Tracing code can invoke write barriers that cannot run without a P.
+ // So instead we remember the syscall exit time and emit the event
+ // in execute when we have a P.
+ _g_.sysexitseq, _g_.sysexitticks = tracestamp()
+ }
+
+ _g_.m.locks--
+
+ // Call the scheduler.
+ mcall(exitsyscall0)
+
+ if _g_.m.mcache == nil {
+ throw("lost mcache")
+ }
+
+ // Scheduler returned, so we're allowed to run now.
+ // Delete the syscallsp information that we left for
+ // the garbage collector during the system call.
+ // Must wait until now because until gosched returns
+ // we don't know for sure that the garbage collector
+ // is not running.
+ _g_.syscallsp = 0
+ _g_.m.p.ptr().syscalltick++
+ _g_.throwsplit = false
+}
+
+//go:nosplit
+func exitsyscallfast() bool {
+ _g_ := getg()
+
+ // Freezetheworld sets stopwait but does not retake P's.
+ if sched.stopwait == freezeStopWait {
+ _g_.m.mcache = nil
+ _g_.m.p = 0
+ return false
+ }
+
+ // Try to re-acquire the last P.
+ if _g_.m.p != 0 && _g_.m.p.ptr().status == _Psyscall && cas(&_g_.m.p.ptr().status, _Psyscall, _Prunning) {
+ // There's a cpu for us, so we can run.
+ _g_.m.mcache = _g_.m.p.ptr().mcache
+ _g_.m.p.ptr().m.set(_g_.m)
+ if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
+ if trace.enabled {
+ // The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed).
+ // traceGoSysBlock for this syscall was already emitted,
+ // but here we effectively retake the p from the new syscall running on the same p.
+ systemstack(func() {
+ // Denote blocking of the new syscall.
+ traceGoSysBlock(_g_.m.p.ptr())
+ // Denote completion of the current syscall.
+ traceGoSysExit(tracestamp())
+ })
+ }
+ _g_.m.p.ptr().syscalltick++
+ }
+ return true
+ }
+
+ // Try to get any other idle P.
+ oldp := _g_.m.p.ptr()
+ _g_.m.mcache = nil
+ _g_.m.p = 0
+ if sched.pidle != 0 {
+ var ok bool
+ systemstack(func() {
+ ok = exitsyscallfast_pidle()
+ if ok && trace.enabled {
+ if oldp != nil {
+ // Wait till traceGoSysBlock event is emitted.
+ // This ensures consistency of the trace (the goroutine is started after it is blocked).
+ for oldp.syscalltick == _g_.m.syscalltick {
+ osyield()
+ }
+ }
+ traceGoSysExit(tracestamp())
+ }
+ })
+ if ok {
+ return true
+ }
+ }
+ return false
+}
+
+func exitsyscallfast_pidle() bool {
+ lock(&sched.lock)
+ _p_ := pidleget()
+ if _p_ != nil && atomicload(&sched.sysmonwait) != 0 {
+ atomicstore(&sched.sysmonwait, 0)
+ notewakeup(&sched.sysmonnote)
+ }
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ return true
+ }
+ return false
+}
+
+// exitsyscall slow path on g0.
+// Failed to acquire P, enqueue gp as runnable.
+func exitsyscall0(gp *g) {
+ _g_ := getg()
+
+ casgstatus(gp, _Gsyscall, _Grunnable)
+ dropg()
+ lock(&sched.lock)
+ _p_ := pidleget()
+ if _p_ == nil {
+ globrunqput(gp)
+ } else if atomicload(&sched.sysmonwait) != 0 {
+ atomicstore(&sched.sysmonwait, 0)
+ notewakeup(&sched.sysmonnote)
+ }
+ unlock(&sched.lock)
+ if _p_ != nil {
+ acquirep(_p_)
+ execute(gp, false) // Never returns.
+ }
+ if _g_.m.lockedg != nil {
+ // Wait until another thread schedules gp and so m again.
+ stoplockedm()
+ execute(gp, false) // Never returns.
+ }
+ stopm()
+ schedule() // Never returns.
+}
+
+func beforefork() {
+ gp := getg().m.curg
+
+ // Fork can hang if preempted with signals frequently enough (see issue 5517).
+ // Ensure that we stay on the same M where we disable profiling.
+ gp.m.locks++
+ if gp.m.profilehz != 0 {
+ resetcpuprofiler(0)
+ }
+
+ // This function is called before fork in syscall package.
+ // Code between fork and exec must not allocate memory nor even try to grow stack.
+ // Here we spoil g->_StackGuard to reliably detect any attempts to grow stack.
+ // runtime_AfterFork will undo this in parent process, but not in child.
+ gp.stackguard0 = stackFork
+}
+
+// Called from syscall package before fork.
+//go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork
+//go:nosplit
+func syscall_runtime_BeforeFork() {
+ systemstack(beforefork)
+}
+
+func afterfork() {
+ gp := getg().m.curg
+
+ // See the comment in beforefork.
+ gp.stackguard0 = gp.stack.lo + _StackGuard
+
+ hz := sched.profilehz
+ if hz != 0 {
+ resetcpuprofiler(hz)
+ }
+ gp.m.locks--
+}
+
+// Called from syscall package after fork in parent.
+//go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork
+//go:nosplit
+func syscall_runtime_AfterFork() {
+ systemstack(afterfork)
+}
+
+// Allocate a new g, with a stack big enough for stacksize bytes.
+func malg(stacksize int32) *g {
+ newg := new(g)
+ if stacksize >= 0 {
+ stacksize = round2(_StackSystem + stacksize)
+ systemstack(func() {
+ newg.stack, newg.stkbar = stackalloc(uint32(stacksize))
+ })
+ newg.stackguard0 = newg.stack.lo + _StackGuard
+ newg.stackguard1 = ^uintptr(0)
+ newg.stackAlloc = uintptr(stacksize)
+ }
+ return newg
+}
+
+// Create a new g running fn with siz bytes of arguments.
+// Put it on the queue of g's waiting to run.
+// The compiler turns a go statement into a call to this.
+// Cannot split the stack because it assumes that the arguments
+// are available sequentially after &fn; they would not be
+// copied if a stack split occurred.
+//go:nosplit
+func newproc(siz int32, fn *funcval) {
+ argp := add(unsafe.Pointer(&fn), ptrSize)
+ pc := getcallerpc(unsafe.Pointer(&siz))
+ systemstack(func() {
+ newproc1(fn, (*uint8)(argp), siz, 0, pc)
+ })
+}
+
+// Create a new g running fn with narg bytes of arguments starting
+// at argp and returning nret bytes of results. callerpc is the
+// address of the go statement that created this. The new g is put
+// on the queue of g's waiting to run.
+func newproc1(fn *funcval, argp *uint8, narg int32, nret int32, callerpc uintptr) *g {
+ _g_ := getg()
+
+ if fn == nil {
+ _g_.m.throwing = -1 // do not dump full stacks
+ throw("go of nil func value")
+ }
+ _g_.m.locks++ // disable preemption because it can be holding p in a local var
+ siz := narg + nret
+ siz = (siz + 7) &^ 7
+
+ // We could allocate a larger initial stack if necessary.
+ // Not worth it: this is almost always an error.
+ // 4*sizeof(uintreg): extra space added below
+ // sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
+ if siz >= _StackMin-4*regSize-regSize {
+ throw("newproc: function arguments too large for new goroutine")
+ }
+
+ _p_ := _g_.m.p.ptr()
+ newg := gfget(_p_)
+ if newg == nil {
+ newg = malg(_StackMin)
+ casgstatus(newg, _Gidle, _Gdead)
+ allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
+ }
+ if newg.stack.hi == 0 {
+ throw("newproc1: newg missing stack")
+ }
+
+ if readgstatus(newg) != _Gdead {
+ throw("newproc1: new g is not Gdead")
+ }
+
+ totalSize := 4*regSize + uintptr(siz) + minFrameSize // extra space in case of reads slightly beyond frame
+ totalSize += -totalSize & (spAlign - 1) // align to spAlign
+ sp := newg.stack.hi - totalSize
+ spArg := sp
+ if usesLR {
+ // caller's LR
+ *(*unsafe.Pointer)(unsafe.Pointer(sp)) = nil
+ spArg += minFrameSize
+ }
+ memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg))
+
+ memclr(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
+ newg.sched.sp = sp
+ newg.stktopsp = sp
+ newg.sched.pc = funcPC(goexit) + _PCQuantum // +PCQuantum so that previous instruction is in same function
+ newg.sched.g = guintptr(unsafe.Pointer(newg))
+ gostartcallfn(&newg.sched, fn)
+ newg.gopc = callerpc
+ newg.startpc = fn.fn
+ casgstatus(newg, _Gdead, _Grunnable)
+
+ if _p_.goidcache == _p_.goidcacheend {
+ // Sched.goidgen is the last allocated id,
+ // this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
+ // At startup sched.goidgen=0, so main goroutine receives goid=1.
+ _p_.goidcache = xadd64(&sched.goidgen, _GoidCacheBatch)
+ _p_.goidcache -= _GoidCacheBatch - 1
+ _p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
+ }
+ newg.goid = int64(_p_.goidcache)
+ _p_.goidcache++
+ if raceenabled {
+ newg.racectx = racegostart(callerpc)
+ }
+ if trace.enabled {
+ traceGoCreate(newg, newg.startpc)
+ }
+ runqput(_p_, newg, true)
+
+ if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 && unsafe.Pointer(fn.fn) != unsafe.Pointer(funcPC(main)) { // TODO: fast atomic
+ wakep()
+ }
+ _g_.m.locks--
+ if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
+ _g_.stackguard0 = stackPreempt
+ }
+ return newg
+}
+
+// Put on gfree list.
+// If local list is too long, transfer a batch to the global list.
+func gfput(_p_ *p, gp *g) {
+ if readgstatus(gp) != _Gdead {
+ throw("gfput: bad status (not Gdead)")
+ }
+
+ stksize := gp.stackAlloc
+
+ if stksize != _FixedStack {
+ // non-standard stack size - free it.
+ stackfree(gp.stack, gp.stackAlloc)
+ gp.stack.lo = 0
+ gp.stack.hi = 0
+ gp.stackguard0 = 0
+ gp.stkbar = nil
+ gp.stkbarPos = 0
+ } else {
+ // Reset stack barriers.
+ gp.stkbar = gp.stkbar[:0]
+ gp.stkbarPos = 0
+ }
+
+ gp.schedlink.set(_p_.gfree)
+ _p_.gfree = gp
+ _p_.gfreecnt++
+ if _p_.gfreecnt >= 64 {
+ lock(&sched.gflock)
+ for _p_.gfreecnt >= 32 {
+ _p_.gfreecnt--
+ gp = _p_.gfree
+ _p_.gfree = gp.schedlink.ptr()
+ gp.schedlink.set(sched.gfree)
+ sched.gfree = gp
+ sched.ngfree++
+ }
+ unlock(&sched.gflock)
+ }
+}
+
+// Get from gfree list.
+// If local list is empty, grab a batch from global list.
+func gfget(_p_ *p) *g {
+retry:
+ gp := _p_.gfree
+ if gp == nil && sched.gfree != nil {
+ lock(&sched.gflock)
+ for _p_.gfreecnt < 32 && sched.gfree != nil {
+ _p_.gfreecnt++
+ gp = sched.gfree
+ sched.gfree = gp.schedlink.ptr()
+ sched.ngfree--
+ gp.schedlink.set(_p_.gfree)
+ _p_.gfree = gp
+ }
+ unlock(&sched.gflock)
+ goto retry
+ }
+ if gp != nil {
+ _p_.gfree = gp.schedlink.ptr()
+ _p_.gfreecnt--
+ if gp.stack.lo == 0 {
+ // Stack was deallocated in gfput. Allocate a new one.
+ systemstack(func() {
+ gp.stack, gp.stkbar = stackalloc(_FixedStack)
+ })
+ gp.stackguard0 = gp.stack.lo + _StackGuard
+ gp.stackAlloc = _FixedStack
+ } else {
+ if raceenabled {
+ racemalloc(unsafe.Pointer(gp.stack.lo), gp.stackAlloc)
+ }
+ }
+ }
+ return gp
+}
+
+// Purge all cached G's from gfree list to the global list.
+func gfpurge(_p_ *p) {
+ lock(&sched.gflock)
+ for _p_.gfreecnt != 0 {
+ _p_.gfreecnt--
+ gp := _p_.gfree
+ _p_.gfree = gp.schedlink.ptr()
+ gp.schedlink.set(sched.gfree)
+ sched.gfree = gp
+ sched.ngfree++
+ }
+ unlock(&sched.gflock)
+}
+
+// Breakpoint executes a breakpoint trap.
+func Breakpoint() {
+ breakpoint()
+}
+
+// dolockOSThread is called by LockOSThread and lockOSThread below
+// after they modify m.locked. Do not allow preemption during this call,
+// or else the m might be different in this function than in the caller.
+//go:nosplit
+func dolockOSThread() {
+ _g_ := getg()
+ _g_.m.lockedg = _g_
+ _g_.lockedm = _g_.m
+}
+
+//go:nosplit
+
+// LockOSThread wires the calling goroutine to its current operating system thread.
+// Until the calling goroutine exits or calls UnlockOSThread, it will always
+// execute in that thread, and no other goroutine can.
+func LockOSThread() {
+ getg().m.locked |= _LockExternal
+ dolockOSThread()
+}
+
+//go:nosplit
+func lockOSThread() {
+ getg().m.locked += _LockInternal
+ dolockOSThread()
+}
+
+// dounlockOSThread is called by UnlockOSThread and unlockOSThread below
+// after they update m->locked. Do not allow preemption during this call,
+// or else the m might be in different in this function than in the caller.
+//go:nosplit
+func dounlockOSThread() {
+ _g_ := getg()
+ if _g_.m.locked != 0 {
+ return
+ }
+ _g_.m.lockedg = nil
+ _g_.lockedm = nil
+}
+
+//go:nosplit
+
+// UnlockOSThread unwires the calling goroutine from its fixed operating system thread.
+// If the calling goroutine has not called LockOSThread, UnlockOSThread is a no-op.
+func UnlockOSThread() {
+ getg().m.locked &^= _LockExternal
+ dounlockOSThread()
+}
+
+//go:nosplit
+func unlockOSThread() {
+ _g_ := getg()
+ if _g_.m.locked < _LockInternal {
+ systemstack(badunlockosthread)
+ }
+ _g_.m.locked -= _LockInternal
+ dounlockOSThread()
+}
+
+func badunlockosthread() {
+ throw("runtime: internal error: misuse of lockOSThread/unlockOSThread")
+}
+
+func gcount() int32 {
+ n := int32(allglen) - sched.ngfree
+ for i := 0; ; i++ {
+ _p_ := allp[i]
+ if _p_ == nil {
+ break
+ }
+ n -= _p_.gfreecnt
+ }
+
+ // All these variables can be changed concurrently, so the result can be inconsistent.
+ // But at least the current goroutine is running.
+ if n < 1 {
+ n = 1
+ }
+ return n
+}
+
+func mcount() int32 {
+ return sched.mcount
+}
+
+var prof struct {
+ lock uint32
+ hz int32
+}
+
+func _System() { _System() }
+func _ExternalCode() { _ExternalCode() }
+func _GC() { _GC() }
+
+// Called if we receive a SIGPROF signal.
+func sigprof(pc, sp, lr uintptr, gp *g, mp *m) {
+ if prof.hz == 0 {
+ return
+ }
+
+ // Profiling runs concurrently with GC, so it must not allocate.
+ mp.mallocing++
+
+ // Coordinate with stack barrier insertion in scanstack.
+ for !cas(&gp.stackLock, 0, 1) {
+ osyield()
+ }
+
+ // Define that a "user g" is a user-created goroutine, and a "system g"
+ // is one that is m->g0 or m->gsignal.
+ //
+ // We might be interrupted for profiling halfway through a
+ // goroutine switch. The switch involves updating three (or four) values:
+ // g, PC, SP, and (on arm) LR. The PC must be the last to be updated,
+ // because once it gets updated the new g is running.
+ //
+ // When switching from a user g to a system g, LR is not considered live,
+ // so the update only affects g, SP, and PC. Since PC must be last, there
+ // the possible partial transitions in ordinary execution are (1) g alone is updated,
+ // (2) both g and SP are updated, and (3) SP alone is updated.
+ // If SP or g alone is updated, we can detect the partial transition by checking
+ // whether the SP is within g's stack bounds. (We could also require that SP
+ // be changed only after g, but the stack bounds check is needed by other
+ // cases, so there is no need to impose an additional requirement.)
+ //
+ // There is one exceptional transition to a system g, not in ordinary execution.
+ // When a signal arrives, the operating system starts the signal handler running
+ // with an updated PC and SP. The g is updated last, at the beginning of the
+ // handler. There are two reasons this is okay. First, until g is updated the
+ // g and SP do not match, so the stack bounds check detects the partial transition.
+ // Second, signal handlers currently run with signals disabled, so a profiling
+ // signal cannot arrive during the handler.
+ //
+ // When switching from a system g to a user g, there are three possibilities.
+ //
+ // First, it may be that the g switch has no PC update, because the SP
+ // either corresponds to a user g throughout (as in asmcgocall)
+ // or because it has been arranged to look like a user g frame
+ // (as in cgocallback_gofunc). In this case, since the entire
+ // transition is a g+SP update, a partial transition updating just one of
+ // those will be detected by the stack bounds check.
+ //
+ // Second, when returning from a signal handler, the PC and SP updates
+ // are performed by the operating system in an atomic update, so the g
+ // update must be done before them. The stack bounds check detects
+ // the partial transition here, and (again) signal handlers run with signals
+ // disabled, so a profiling signal cannot arrive then anyway.
+ //
+ // Third, the common case: it may be that the switch updates g, SP, and PC
+ // separately. If the PC is within any of the functions that does this,
+ // we don't ask for a traceback. C.F. the function setsSP for more about this.
+ //
+ // There is another apparently viable approach, recorded here in case
+ // the "PC within setsSP function" check turns out not to be usable.
+ // It would be possible to delay the update of either g or SP until immediately
+ // before the PC update instruction. Then, because of the stack bounds check,
+ // the only problematic interrupt point is just before that PC update instruction,
+ // and the sigprof handler can detect that instruction and simulate stepping past
+ // it in order to reach a consistent state. On ARM, the update of g must be made
+ // in two places (in R10 and also in a TLS slot), so the delayed update would
+ // need to be the SP update. The sigprof handler must read the instruction at
+ // the current PC and if it was the known instruction (for example, JMP BX or
+ // MOV R2, PC), use that other register in place of the PC value.
+ // The biggest drawback to this solution is that it requires that we can tell
+ // whether it's safe to read from the memory pointed at by PC.
+ // In a correct program, we can test PC == nil and otherwise read,
+ // but if a profiling signal happens at the instant that a program executes
+ // a bad jump (before the program manages to handle the resulting fault)
+ // the profiling handler could fault trying to read nonexistent memory.
+ //
+ // To recap, there are no constraints on the assembly being used for the
+ // transition. We simply require that g and SP match and that the PC is not
+ // in gogo.
+ traceback := true
+ if gp == nil || sp < gp.stack.lo || gp.stack.hi < sp || setsSP(pc) {
+ traceback = false
+ }
+ var stk [maxCPUProfStack]uintptr
+ n := 0
+ if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 {
+ // Cgo, we can't unwind and symbolize arbitrary C code,
+ // so instead collect Go stack that leads to the cgo call.
+ // This is especially important on windows, since all syscalls are cgo calls.
+ n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[0], len(stk), nil, nil, 0)
+ } else if traceback {
+ n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap|_TraceJumpStack)
+ }
+ if !traceback || n <= 0 {
+ // Normal traceback is impossible or has failed.
+ // See if it falls into several common cases.
+ n = 0
+ if GOOS == "windows" && n == 0 && mp.libcallg != 0 && mp.libcallpc != 0 && mp.libcallsp != 0 {
+ // Libcall, i.e. runtime syscall on windows.
+ // Collect Go stack that leads to the call.
+ n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg.ptr(), 0, &stk[0], len(stk), nil, nil, 0)
+ }
+ if n == 0 {
+ // If all of the above has failed, account it against abstract "System" or "GC".
+ n = 2
+ // "ExternalCode" is better than "etext".
+ if pc > firstmoduledata.etext {
+ pc = funcPC(_ExternalCode) + _PCQuantum
+ }
+ stk[0] = pc
+ if mp.preemptoff != "" || mp.helpgc != 0 {
+ stk[1] = funcPC(_GC) + _PCQuantum
+ } else {
+ stk[1] = funcPC(_System) + _PCQuantum
+ }
+ }
+ }
+ atomicstore(&gp.stackLock, 0)
+
+ if prof.hz != 0 {
+ // Simple cas-lock to coordinate with setcpuprofilerate.
+ for !cas(&prof.lock, 0, 1) {
+ osyield()
+ }
+ if prof.hz != 0 {
+ cpuprof.add(stk[:n])
+ }
+ atomicstore(&prof.lock, 0)
+ }
+ mp.mallocing--
+}
+
+// Reports whether a function will set the SP
+// to an absolute value. Important that
+// we don't traceback when these are at the bottom
+// of the stack since we can't be sure that we will
+// find the caller.
+//
+// If the function is not on the bottom of the stack
+// we assume that it will have set it up so that traceback will be consistent,
+// either by being a traceback terminating function
+// or putting one on the stack at the right offset.
+func setsSP(pc uintptr) bool {
+ f := findfunc(pc)
+ if f == nil {
+ // couldn't find the function for this PC,
+ // so assume the worst and stop traceback
+ return true
+ }
+ switch f.entry {
+ case gogoPC, systemstackPC, mcallPC, morestackPC:
+ return true
+ }
+ return false
+}
+
+// Arrange to call fn with a traceback hz times a second.
+func setcpuprofilerate_m(hz int32) {
+ // Force sane arguments.
+ if hz < 0 {
+ hz = 0
+ }
+
+ // Disable preemption, otherwise we can be rescheduled to another thread
+ // that has profiling enabled.
+ _g_ := getg()
+ _g_.m.locks++
+
+ // Stop profiler on this thread so that it is safe to lock prof.
+ // if a profiling signal came in while we had prof locked,
+ // it would deadlock.
+ resetcpuprofiler(0)
+
+ for !cas(&prof.lock, 0, 1) {
+ osyield()
+ }
+ prof.hz = hz
+ atomicstore(&prof.lock, 0)
+
+ lock(&sched.lock)
+ sched.profilehz = hz
+ unlock(&sched.lock)
+
+ if hz != 0 {
+ resetcpuprofiler(hz)
+ }
+
+ _g_.m.locks--
+}
+
+// Change number of processors. The world is stopped, sched is locked.
+// gcworkbufs are not being modified by either the GC or
+// the write barrier code.
+// Returns list of Ps with local work, they need to be scheduled by the caller.
+func procresize(nprocs int32) *p {
+ old := gomaxprocs
+ if old < 0 || old > _MaxGomaxprocs || nprocs <= 0 || nprocs > _MaxGomaxprocs {
+ throw("procresize: invalid arg")
+ }
+ if trace.enabled {
+ traceGomaxprocs(nprocs)
+ }
+
+ // update statistics
+ now := nanotime()
+ if sched.procresizetime != 0 {
+ sched.totaltime += int64(old) * (now - sched.procresizetime)
+ }
+ sched.procresizetime = now
+
+ // initialize new P's
+ for i := int32(0); i < nprocs; i++ {
+ pp := allp[i]
+ if pp == nil {
+ pp = new(p)
+ pp.id = i
+ pp.status = _Pgcstop
+ pp.sudogcache = pp.sudogbuf[:0]
+ for i := range pp.deferpool {
+ pp.deferpool[i] = pp.deferpoolbuf[i][:0]
+ }
+ atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
+ }
+ if pp.mcache == nil {
+ if old == 0 && i == 0 {
+ if getg().m.mcache == nil {
+ throw("missing mcache?")
+ }
+ pp.mcache = getg().m.mcache // bootstrap
+ } else {
+ pp.mcache = allocmcache()
+ }
+ }
+ }
+
+ // free unused P's
+ for i := nprocs; i < old; i++ {
+ p := allp[i]
+ if trace.enabled {
+ if p == getg().m.p.ptr() {
+ // moving to p[0], pretend that we were descheduled
+ // and then scheduled again to keep the trace sane.
+ traceGoSched()
+ traceProcStop(p)
+ }
+ }
+ // move all runnable goroutines to the global queue
+ for p.runqhead != p.runqtail {
+ // pop from tail of local queue
+ p.runqtail--
+ gp := p.runq[p.runqtail%uint32(len(p.runq))]
+ // push onto head of global queue
+ globrunqputhead(gp)
+ }
+ if p.runnext != 0 {
+ globrunqputhead(p.runnext.ptr())
+ p.runnext = 0
+ }
+ // if there's a background worker, make it runnable and put
+ // it on the global queue so it can clean itself up
+ if p.gcBgMarkWorker != nil {
+ casgstatus(p.gcBgMarkWorker, _Gwaiting, _Grunnable)
+ if trace.enabled {
+ traceGoUnpark(p.gcBgMarkWorker, 0)
+ }
+ globrunqput(p.gcBgMarkWorker)
+ p.gcBgMarkWorker = nil
+ }
+ for i := range p.sudogbuf {
+ p.sudogbuf[i] = nil
+ }
+ p.sudogcache = p.sudogbuf[:0]
+ for i := range p.deferpool {
+ for j := range p.deferpoolbuf[i] {
+ p.deferpoolbuf[i][j] = nil
+ }
+ p.deferpool[i] = p.deferpoolbuf[i][:0]
+ }
+ freemcache(p.mcache)
+ p.mcache = nil
+ gfpurge(p)
+ traceProcFree(p)
+ p.status = _Pdead
+ // can't free P itself because it can be referenced by an M in syscall
+ }
+
+ _g_ := getg()
+ if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs {
+ // continue to use the current P
+ _g_.m.p.ptr().status = _Prunning
+ } else {
+ // release the current P and acquire allp[0]
+ if _g_.m.p != 0 {
+ _g_.m.p.ptr().m = 0
+ }
+ _g_.m.p = 0
+ _g_.m.mcache = nil
+ p := allp[0]
+ p.m = 0
+ p.status = _Pidle
+ acquirep(p)
+ if trace.enabled {
+ traceGoStart()
+ }
+ }
+ var runnablePs *p
+ for i := nprocs - 1; i >= 0; i-- {
+ p := allp[i]
+ if _g_.m.p.ptr() == p {
+ continue
+ }
+ p.status = _Pidle
+ if runqempty(p) {
+ pidleput(p)
+ } else {
+ p.m.set(mget())
+ p.link.set(runnablePs)
+ runnablePs = p
+ }
+ }
+ var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
+ atomicstore((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
+ return runnablePs
+}
+
+// Associate p and the current m.
+func acquirep(_p_ *p) {
+ acquirep1(_p_)
+
+ // have p; write barriers now allowed
+ _g_ := getg()
+ _g_.m.mcache = _p_.mcache
+
+ if trace.enabled {
+ traceProcStart()
+ }
+}
+
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrier
+func acquirep1(_p_ *p) {
+ _g_ := getg()
+
+ if _g_.m.p != 0 || _g_.m.mcache != nil {
+ throw("acquirep: already in go")
+ }
+ if _p_.m != 0 || _p_.status != _Pidle {
+ id := int32(0)
+ if _p_.m != 0 {
+ id = _p_.m.ptr().id
+ }
+ print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n")
+ throw("acquirep: invalid p state")
+ }
+ _g_.m.p.set(_p_)
+ _p_.m.set(_g_.m)
+ _p_.status = _Prunning
+}
+
+// Disassociate p and the current m.
+func releasep() *p {
+ _g_ := getg()
+
+ if _g_.m.p == 0 || _g_.m.mcache == nil {
+ throw("releasep: invalid arg")
+ }
+ _p_ := _g_.m.p.ptr()
+ if _p_.m.ptr() != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning {
+ print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n")
+ throw("releasep: invalid p state")
+ }
+ if trace.enabled {
+ traceProcStop(_g_.m.p.ptr())
+ }
+ _g_.m.p = 0
+ _g_.m.mcache = nil
+ _p_.m = 0
+ _p_.status = _Pidle
+ return _p_
+}
+
+func incidlelocked(v int32) {
+ lock(&sched.lock)
+ sched.nmidlelocked += v
+ if v > 0 {
+ checkdead()
+ }
+ unlock(&sched.lock)
+}
+
+// Check for deadlock situation.
+// The check is based on number of running M's, if 0 -> deadlock.
+func checkdead() {
+ // For -buildmode=c-shared or -buildmode=c-archive it's OK if
+ // there are no running goroutines. The calling program is
+ // assumed to be running.
+ if islibrary || isarchive {
+ return
+ }
+
+ // If we are dying because of a signal caught on an already idle thread,
+ // freezetheworld will cause all running threads to block.
+ // And runtime will essentially enter into deadlock state,
+ // except that there is a thread that will call exit soon.
+ if panicking > 0 {
+ return
+ }
+
+ // -1 for sysmon
+ run := sched.mcount - sched.nmidle - sched.nmidlelocked - 1
+ if run > 0 {
+ return
+ }
+ if run < 0 {
+ print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", sched.mcount, "\n")
+ throw("checkdead: inconsistent counts")
+ }
+
+ grunning := 0
+ lock(&allglock)
+ for i := 0; i < len(allgs); i++ {
+ gp := allgs[i]
+ if isSystemGoroutine(gp) {
+ continue
+ }
+ s := readgstatus(gp)
+ switch s &^ _Gscan {
+ case _Gwaiting:
+ grunning++
+ case _Grunnable,
+ _Grunning,
+ _Gsyscall:
+ unlock(&allglock)
+ print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n")
+ throw("checkdead: runnable g")
+ }
+ }
+ unlock(&allglock)
+ if grunning == 0 { // possible if main goroutine calls runtimeĀ·Goexit()
+ throw("no goroutines (main called runtime.Goexit) - deadlock!")
+ }
+
+ // Maybe jump time forward for playground.
+ gp := timejump()
+ if gp != nil {
+ casgstatus(gp, _Gwaiting, _Grunnable)
+ globrunqput(gp)
+ _p_ := pidleget()
+ if _p_ == nil {
+ throw("checkdead: no p for timer")
+ }
+ mp := mget()
+ if mp == nil {
+ newm(nil, _p_)
+ } else {
+ mp.nextp.set(_p_)
+ notewakeup(&mp.park)
+ }
+ return
+ }
+
+ getg().m.throwing = -1 // do not dump full stacks
+ throw("all goroutines are asleep - deadlock!")
+}
+
+// forcegcperiod is the maximum time in nanoseconds between garbage
+// collections. If we go this long without a garbage collection, one
+// is forced to run.
+//
+// This is a variable for testing purposes. It normally doesn't change.
+var forcegcperiod int64 = 2 * 60 * 1e9
+
+func sysmon() {
+ // If a heap span goes unused for 5 minutes after a garbage collection,
+ // we hand it back to the operating system.
+ scavengelimit := int64(5 * 60 * 1e9)
+
+ if debug.scavenge > 0 {
+ // Scavenge-a-lot for testing.
+ forcegcperiod = 10 * 1e6
+ scavengelimit = 20 * 1e6
+ }
+
+ lastscavenge := nanotime()
+ nscavenge := 0
+
+ lasttrace := int64(0)
+ idle := 0 // how many cycles in succession we had not wokeup somebody
+ delay := uint32(0)
+ for {
+ if idle == 0 { // start with 20us sleep...
+ delay = 20
+ } else if idle > 50 { // start doubling the sleep after 1ms...
+ delay *= 2
+ }
+ if delay > 10*1000 { // up to 10ms
+ delay = 10 * 1000
+ }
+ usleep(delay)
+ if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs)) { // TODO: fast atomic
+ lock(&sched.lock)
+ if atomicload(&sched.gcwaiting) != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs) {
+ atomicstore(&sched.sysmonwait, 1)
+ unlock(&sched.lock)
+ // Make wake-up period small enough
+ // for the sampling to be correct.
+ maxsleep := forcegcperiod / 2
+ if scavengelimit < forcegcperiod {
+ maxsleep = scavengelimit / 2
+ }
+ notetsleep(&sched.sysmonnote, maxsleep)
+ lock(&sched.lock)
+ atomicstore(&sched.sysmonwait, 0)
+ noteclear(&sched.sysmonnote)
+ idle = 0
+ delay = 20
+ }
+ unlock(&sched.lock)
+ }
+ // poll network if not polled for more than 10ms
+ lastpoll := int64(atomicload64(&sched.lastpoll))
+ now := nanotime()
+ unixnow := unixnanotime()
+ if lastpoll != 0 && lastpoll+10*1000*1000 < now {
+ cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
+ gp := netpoll(false) // non-blocking - returns list of goroutines
+ if gp != nil {
+ // Need to decrement number of idle locked M's
+ // (pretending that one more is running) before injectglist.
+ // Otherwise it can lead to the following situation:
+ // injectglist grabs all P's but before it starts M's to run the P's,
+ // another M returns from syscall, finishes running its G,
+ // observes that there is no work to do and no other running M's
+ // and reports deadlock.
+ incidlelocked(-1)
+ injectglist(gp)
+ incidlelocked(1)
+ }
+ }
+ // retake P's blocked in syscalls
+ // and preempt long running G's
+ if retake(now) != 0 {
+ idle = 0
+ } else {
+ idle++
+ }
+ // check if we need to force a GC
+ lastgc := int64(atomicload64(&memstats.last_gc))
+ if lastgc != 0 && unixnow-lastgc > forcegcperiod && atomicload(&forcegc.idle) != 0 && atomicloaduint(&bggc.working) == 0 {
+ lock(&forcegc.lock)
+ forcegc.idle = 0
+ forcegc.g.schedlink = 0
+ injectglist(forcegc.g)
+ unlock(&forcegc.lock)
+ }
+ // scavenge heap once in a while
+ if lastscavenge+scavengelimit/2 < now {
+ mHeap_Scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit))
+ lastscavenge = now
+ nscavenge++
+ }
+ if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace*1000000) <= now {
+ lasttrace = now
+ schedtrace(debug.scheddetail > 0)
+ }
+ }
+}
+
+var pdesc [_MaxGomaxprocs]struct {
+ schedtick uint32
+ schedwhen int64
+ syscalltick uint32
+ syscallwhen int64
+}
+
+// forcePreemptNS is the time slice given to a G before it is
+// preempted.
+const forcePreemptNS = 10 * 1000 * 1000 // 10ms
+
+func retake(now int64) uint32 {
+ n := 0
+ for i := int32(0); i < gomaxprocs; i++ {
+ _p_ := allp[i]
+ if _p_ == nil {
+ continue
+ }
+ pd := &pdesc[i]
+ s := _p_.status
+ if s == _Psyscall {
+ // Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
+ t := int64(_p_.syscalltick)
+ if int64(pd.syscalltick) != t {
+ pd.syscalltick = uint32(t)
+ pd.syscallwhen = now
+ continue
+ }
+ // On the one hand we don't want to retake Ps if there is no other work to do,
+ // but on the other hand we want to retake them eventually
+ // because they can prevent the sysmon thread from deep sleep.
+ if runqempty(_p_) && atomicload(&sched.nmspinning)+atomicload(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
+ continue
+ }
+ // Need to decrement number of idle locked M's
+ // (pretending that one more is running) before the CAS.
+ // Otherwise the M from which we retake can exit the syscall,
+ // increment nmidle and report deadlock.
+ incidlelocked(-1)
+ if cas(&_p_.status, s, _Pidle) {
+ if trace.enabled {
+ traceGoSysBlock(_p_)
+ traceProcStop(_p_)
+ }
+ n++
+ _p_.syscalltick++
+ handoffp(_p_)
+ }
+ incidlelocked(1)
+ } else if s == _Prunning {
+ // Preempt G if it's running for too long.
+ t := int64(_p_.schedtick)
+ if int64(pd.schedtick) != t {
+ pd.schedtick = uint32(t)
+ pd.schedwhen = now
+ continue
+ }
+ if pd.schedwhen+forcePreemptNS > now {
+ continue
+ }
+ preemptone(_p_)
+ }
+ }
+ return uint32(n)
+}
+
+// Tell all goroutines that they have been preempted and they should stop.
+// This function is purely best-effort. It can fail to inform a goroutine if a
+// processor just started running it.
+// No locks need to be held.
+// Returns true if preemption request was issued to at least one goroutine.
+func preemptall() bool {
+ res := false
+ for i := int32(0); i < gomaxprocs; i++ {
+ _p_ := allp[i]
+ if _p_ == nil || _p_.status != _Prunning {
+ continue
+ }
+ if preemptone(_p_) {
+ res = true
+ }
+ }
+ return res
+}
+
+// Tell the goroutine running on processor P to stop.
+// This function is purely best-effort. It can incorrectly fail to inform the
+// goroutine. It can send inform the wrong goroutine. Even if it informs the
+// correct goroutine, that goroutine might ignore the request if it is
+// simultaneously executing newstack.
+// No lock needs to be held.
+// Returns true if preemption request was issued.
+// The actual preemption will happen at some point in the future
+// and will be indicated by the gp->status no longer being
+// Grunning
+func preemptone(_p_ *p) bool {
+ mp := _p_.m.ptr()
+ if mp == nil || mp == getg().m {
+ return false
+ }
+ gp := mp.curg
+ if gp == nil || gp == mp.g0 {
+ return false
+ }
+
+ gp.preempt = true
+
+ // Every call in a go routine checks for stack overflow by
+ // comparing the current stack pointer to gp->stackguard0.
+ // Setting gp->stackguard0 to StackPreempt folds
+ // preemption into the normal stack overflow check.
+ gp.stackguard0 = stackPreempt
+ return true
+}
+
+var starttime int64
+
+func schedtrace(detailed bool) {
+ now := nanotime()
+ if starttime == 0 {
+ starttime = now
+ }
+
+ lock(&sched.lock)
+ print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", sched.mcount, " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
+ if detailed {
+ print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
+ }
+ // We must be careful while reading data from P's, M's and G's.
+ // Even if we hold schedlock, most data can be changed concurrently.
+ // E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
+ for i := int32(0); i < gomaxprocs; i++ {
+ _p_ := allp[i]
+ if _p_ == nil {
+ continue
+ }
+ mp := _p_.m.ptr()
+ h := atomicload(&_p_.runqhead)
+ t := atomicload(&_p_.runqtail)
+ if detailed {
+ id := int32(-1)
+ if mp != nil {
+ id = mp.id
+ }
+ print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n")
+ } else {
+ // In non-detailed mode format lengths of per-P run queues as:
+ // [len1 len2 len3 len4]
+ print(" ")
+ if i == 0 {
+ print("[")
+ }
+ print(t - h)
+ if i == gomaxprocs-1 {
+ print("]\n")
+ }
+ }
+ }
+
+ if !detailed {
+ unlock(&sched.lock)
+ return
+ }
+
+ for mp := allm; mp != nil; mp = mp.alllink {
+ _p_ := mp.p.ptr()
+ gp := mp.curg
+ lockedg := mp.lockedg
+ id1 := int32(-1)
+ if _p_ != nil {
+ id1 = _p_.id
+ }
+ id2 := int64(-1)
+ if gp != nil {
+ id2 = gp.goid
+ }
+ id3 := int64(-1)
+ if lockedg != nil {
+ id3 = lockedg.goid
+ }
+ print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", getg().m.blocked, " lockedg=", id3, "\n")
+ }
+
+ lock(&allglock)
+ for gi := 0; gi < len(allgs); gi++ {
+ gp := allgs[gi]
+ mp := gp.m
+ lockedm := gp.lockedm
+ id1 := int32(-1)
+ if mp != nil {
+ id1 = mp.id
+ }
+ id2 := int32(-1)
+ if lockedm != nil {
+ id2 = lockedm.id
+ }
+ print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n")
+ }
+ unlock(&allglock)
+ unlock(&sched.lock)
+}
+
+// Put mp on midle list.
+// Sched must be locked.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrier
+func mput(mp *m) {
+ mp.schedlink = sched.midle
+ sched.midle.set(mp)
+ sched.nmidle++
+ checkdead()
+}
+
+// Try to get an m from midle list.
+// Sched must be locked.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrier
+func mget() *m {
+ mp := sched.midle.ptr()
+ if mp != nil {
+ sched.midle = mp.schedlink
+ sched.nmidle--
+ }
+ return mp
+}
+
+// Put gp on the global runnable queue.
+// Sched must be locked.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrier
+func globrunqput(gp *g) {
+ gp.schedlink = 0
+ if sched.runqtail != 0 {
+ sched.runqtail.ptr().schedlink.set(gp)
+ } else {
+ sched.runqhead.set(gp)
+ }
+ sched.runqtail.set(gp)
+ sched.runqsize++
+}
+
+// Put gp at the head of the global runnable queue.
+// Sched must be locked.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrier
+func globrunqputhead(gp *g) {
+ gp.schedlink = sched.runqhead
+ sched.runqhead.set(gp)
+ if sched.runqtail == 0 {
+ sched.runqtail.set(gp)
+ }
+ sched.runqsize++
+}
+
+// Put a batch of runnable goroutines on the global runnable queue.
+// Sched must be locked.
+func globrunqputbatch(ghead *g, gtail *g, n int32) {
+ gtail.schedlink = 0
+ if sched.runqtail != 0 {
+ sched.runqtail.ptr().schedlink.set(ghead)
+ } else {
+ sched.runqhead.set(ghead)
+ }
+ sched.runqtail.set(gtail)
+ sched.runqsize += n
+}
+
+// Try get a batch of G's from the global runnable queue.
+// Sched must be locked.
+func globrunqget(_p_ *p, max int32) *g {
+ if sched.runqsize == 0 {
+ return nil
+ }
+
+ n := sched.runqsize/gomaxprocs + 1
+ if n > sched.runqsize {
+ n = sched.runqsize
+ }
+ if max > 0 && n > max {
+ n = max
+ }
+ if n > int32(len(_p_.runq))/2 {
+ n = int32(len(_p_.runq)) / 2
+ }
+
+ sched.runqsize -= n
+ if sched.runqsize == 0 {
+ sched.runqtail = 0
+ }
+
+ gp := sched.runqhead.ptr()
+ sched.runqhead = gp.schedlink
+ n--
+ for ; n > 0; n-- {
+ gp1 := sched.runqhead.ptr()
+ sched.runqhead = gp1.schedlink
+ runqput(_p_, gp1, false)
+ }
+ return gp
+}
+
+// Put p to on _Pidle list.
+// Sched must be locked.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrier
+func pidleput(_p_ *p) {
+ if !runqempty(_p_) {
+ throw("pidleput: P has non-empty run queue")
+ }
+ _p_.link = sched.pidle
+ sched.pidle.set(_p_)
+ xadd(&sched.npidle, 1) // TODO: fast atomic
+}
+
+// Try get a p from _Pidle list.
+// Sched must be locked.
+// May run during STW, so write barriers are not allowed.
+//go:nowritebarrier
+func pidleget() *p {
+ _p_ := sched.pidle.ptr()
+ if _p_ != nil {
+ sched.pidle = _p_.link
+ xadd(&sched.npidle, -1) // TODO: fast atomic
+ }
+ return _p_
+}
+
+// runqempty returns true if _p_ has no Gs on its local run queue.
+// Note that this test is generally racy.
+func runqempty(_p_ *p) bool {
+ return _p_.runqhead == _p_.runqtail && _p_.runnext == 0
+}
+
+// To shake out latent assumptions about scheduling order,
+// we introduce some randomness into scheduling decisions
+// when running with the race detector.
+// The need for this was made obvious by changing the
+// (deterministic) scheduling order in Go 1.5 and breaking
+// many poorly-written tests.
+// With the randomness here, as long as the tests pass
+// consistently with -race, they shouldn't have latent scheduling
+// assumptions.
+const randomizeScheduler = raceenabled
+
+// runqput tries to put g on the local runnable queue.
+// If next if false, runqput adds g to the tail of the runnable queue.
+// If next is true, runqput puts g in the _p_.runnext slot.
+// If the run queue is full, runnext puts g on the global queue.
+// Executed only by the owner P.
+func runqput(_p_ *p, gp *g, next bool) {
+ if randomizeScheduler && next && fastrand1()%2 == 0 {
+ next = false
+ }
+
+ if next {
+ retryNext:
+ oldnext := _p_.runnext
+ if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
+ goto retryNext
+ }
+ if oldnext == 0 {
+ return
+ }
+ // Kick the old runnext out to the regular run queue.
+ gp = oldnext.ptr()
+ }
+
+retry:
+ h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers
+ t := _p_.runqtail
+ if t-h < uint32(len(_p_.runq)) {
+ _p_.runq[t%uint32(len(_p_.runq))] = gp
+ atomicstore(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
+ return
+ }
+ if runqputslow(_p_, gp, h, t) {
+ return
+ }
+ // the queue is not full, now the put above must suceed
+ goto retry
+}
+
+// Put g and a batch of work from local runnable queue on global queue.
+// Executed only by the owner P.
+func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
+ var batch [len(_p_.runq)/2 + 1]*g
+
+ // First, grab a batch from local queue.
+ n := t - h
+ n = n / 2
+ if n != uint32(len(_p_.runq)/2) {
+ throw("runqputslow: queue is not full")
+ }
+ for i := uint32(0); i < n; i++ {
+ batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))]
+ }
+ if !cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
+ return false
+ }
+ batch[n] = gp
+
+ if randomizeScheduler {
+ for i := uint32(1); i <= n; i++ {
+ j := fastrand1() % (i + 1)
+ batch[i], batch[j] = batch[j], batch[i]
+ }
+ }
+
+ // Link the goroutines.
+ for i := uint32(0); i < n; i++ {
+ batch[i].schedlink.set(batch[i+1])
+ }
+
+ // Now put the batch on global queue.
+ lock(&sched.lock)
+ globrunqputbatch(batch[0], batch[n], int32(n+1))
+ unlock(&sched.lock)
+ return true
+}
+
+// Get g from local runnable queue.
+// If inheritTime is true, gp should inherit the remaining time in the
+// current time slice. Otherwise, it should start a new time slice.
+// Executed only by the owner P.
+func runqget(_p_ *p) (gp *g, inheritTime bool) {
+ // If there's a runnext, it's the next G to run.
+ for {
+ next := _p_.runnext
+ if next == 0 {
+ break
+ }
+ if _p_.runnext.cas(next, 0) {
+ return next.ptr(), true
+ }
+ }
+
+ for {
+ h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers
+ t := _p_.runqtail
+ if t == h {
+ return nil, false
+ }
+ gp := _p_.runq[h%uint32(len(_p_.runq))]
+ if cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume
+ return gp, false
+ }
+ }
+}
+
+// Grabs a batch of goroutines from _p_'s runnable queue into batch.
+// Batch is a ring buffer starting at batchHead.
+// Returns number of grabbed goroutines.
+// Can be executed by any P.
+func runqgrab(_p_ *p, batch *[256]*g, batchHead uint32, stealRunNextG bool) uint32 {
+ for {
+ h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers
+ t := atomicload(&_p_.runqtail) // load-acquire, synchronize with the producer
+ n := t - h
+ n = n - n/2
+ if n == 0 {
+ if stealRunNextG {
+ // Try to steal from _p_.runnext.
+ if next := _p_.runnext; next != 0 {
+ // Sleep to ensure that _p_ isn't about to run the g we
+ // are about to steal.
+ // The important use case here is when the g running on _p_
+ // ready()s another g and then almost immediately blocks.
+ // Instead of stealing runnext in this window, back off
+ // to give _p_ a chance to schedule runnext. This will avoid
+ // thrashing gs between different Ps.
+ usleep(100)
+ if !_p_.runnext.cas(next, 0) {
+ continue
+ }
+ batch[batchHead%uint32(len(batch))] = next.ptr()
+ return 1
+ }
+ }
+ return 0
+ }
+ if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t
+ continue
+ }
+ for i := uint32(0); i < n; i++ {
+ g := _p_.runq[(h+i)%uint32(len(_p_.runq))]
+ batch[(batchHead+i)%uint32(len(batch))] = g
+ }
+ if cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
+ return n
+ }
+ }
+}
+
+// Steal half of elements from local runnable queue of p2
+// and put onto local runnable queue of p.
+// Returns one of the stolen elements (or nil if failed).
+func runqsteal(_p_, p2 *p, stealRunNextG bool) *g {
+ t := _p_.runqtail
+ n := runqgrab(p2, &_p_.runq, t, stealRunNextG)
+ if n == 0 {
+ return nil
+ }
+ n--
+ gp := _p_.runq[(t+n)%uint32(len(_p_.runq))]
+ if n == 0 {
+ return gp
+ }
+ h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers
+ if t-h+n >= uint32(len(_p_.runq)) {
+ throw("runqsteal: runq overflow")
+ }
+ atomicstore(&_p_.runqtail, t+n) // store-release, makes the item available for consumption
+ return gp
+}
+
+func testSchedLocalQueue() {
+ _p_ := new(p)
+ gs := make([]g, len(_p_.runq))
+ for i := 0; i < len(_p_.runq); i++ {
+ if g, _ := runqget(_p_); g != nil {
+ throw("runq is not empty initially")
+ }
+ for j := 0; j < i; j++ {
+ runqput(_p_, &gs[i], false)
+ }
+ for j := 0; j < i; j++ {
+ if g, _ := runqget(_p_); g != &gs[i] {
+ print("bad element at iter ", i, "/", j, "\n")
+ throw("bad element")
+ }
+ }
+ if g, _ := runqget(_p_); g != nil {
+ throw("runq is not empty afterwards")
+ }
+ }
+}
+
+func testSchedLocalQueueSteal() {
+ p1 := new(p)
+ p2 := new(p)
+ gs := make([]g, len(p1.runq))
+ for i := 0; i < len(p1.runq); i++ {
+ for j := 0; j < i; j++ {
+ gs[j].sig = 0
+ runqput(p1, &gs[j], false)
+ }
+ gp := runqsteal(p2, p1, true)
+ s := 0
+ if gp != nil {
+ s++
+ gp.sig++
+ }
+ for {
+ gp, _ = runqget(p2)
+ if gp == nil {
+ break
+ }
+ s++
+ gp.sig++
+ }
+ for {
+ gp, _ = runqget(p1)
+ if gp == nil {
+ break
+ }
+ gp.sig++
+ }
+ for j := 0; j < i; j++ {
+ if gs[j].sig != 1 {
+ print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n")
+ throw("bad element")
+ }
+ }
+ if s != i/2 && s != i/2+1 {
+ print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n")
+ throw("bad steal")
+ }
+ }
+}
+
+//go:linkname setMaxThreads runtime/debug.setMaxThreads
+func setMaxThreads(in int) (out int) {
+ lock(&sched.lock)
+ out = int(sched.maxmcount)
+ sched.maxmcount = int32(in)
+ checkmcount()
+ unlock(&sched.lock)
+ return
+}
+
+func haveexperiment(name string) bool {
+ x := goexperiment
+ for x != "" {
+ xname := ""
+ i := index(x, ",")
+ if i < 0 {
+ xname, x = x, ""
+ } else {
+ xname, x = x[:i], x[i+1:]
+ }
+ if xname == name {
+ return true
+ }
+ }
+ return false
+}
+
+//go:nosplit
+func procPin() int {
+ _g_ := getg()
+ mp := _g_.m
+
+ mp.locks++
+ return int(mp.p.ptr().id)
+}
+
+//go:nosplit
+func procUnpin() {
+ _g_ := getg()
+ _g_.m.locks--
+}
+
+//go:linkname sync_runtime_procPin sync.runtime_procPin
+//go:nosplit
+func sync_runtime_procPin() int {
+ return procPin()
+}
+
+//go:linkname sync_runtime_procUnpin sync.runtime_procUnpin
+//go:nosplit
+func sync_runtime_procUnpin() {
+ procUnpin()
+}
+
+//go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin
+//go:nosplit
+func sync_atomic_runtime_procPin() int {
+ return procPin()
+}
+
+//go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin
+//go:nosplit
+func sync_atomic_runtime_procUnpin() {
+ procUnpin()
+}
+
+// Active spinning for sync.Mutex.
+//go:linkname sync_runtime_canSpin sync.runtime_canSpin
+//go:nosplit
+func sync_runtime_canSpin(i int) bool {
+ // sync.Mutex is cooperative, so we are conservative with spinning.
+ // Spin only few times and only if running on a multicore machine and
+ // GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
+ // As opposed to runtime mutex we don't do passive spinning here,
+ // because there can be work on global runq on on other Ps.
+ if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
+ return false
+ }
+ if p := getg().m.p.ptr(); !runqempty(p) {
+ return false
+ }
+ return true
+}
+
+//go:linkname sync_runtime_doSpin sync.runtime_doSpin
+//go:nosplit
+func sync_runtime_doSpin() {
+ procyield(active_spin_cnt)
+}
+++ /dev/null
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package runtime
-
-import "unsafe"
-
-var (
- m0 m
- g0 g
-)
-
-// Goroutine scheduler
-// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
-//
-// The main concepts are:
-// G - goroutine.
-// M - worker thread, or machine.
-// P - processor, a resource that is required to execute Go code.
-// M must have an associated P to execute Go code, however it can be
-// blocked or in a syscall w/o an associated P.
-//
-// Design doc at https://golang.org/s/go11sched.
-
-const (
- // Number of goroutine ids to grab from sched.goidgen to local per-P cache at once.
- // 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
- _GoidCacheBatch = 16
-)
-
-// The bootstrap sequence is:
-//
-// call osinit
-// call schedinit
-// make & queue new G
-// call runtimeĀ·mstart
-//
-// The new G calls runtimeĀ·main.
-func schedinit() {
- // raceinit must be the first call to race detector.
- // In particular, it must be done before mallocinit below calls racemapshadow.
- _g_ := getg()
- if raceenabled {
- _g_.racectx = raceinit()
- }
-
- sched.maxmcount = 10000
-
- // Cache the framepointer experiment. This affects stack unwinding.
- framepointer_enabled = haveexperiment("framepointer")
-
- tracebackinit()
- moduledataverify()
- stackinit()
- mallocinit()
- mcommoninit(_g_.m)
-
- goargs()
- goenvs()
- parsedebugvars()
- gcinit()
-
- sched.lastpoll = uint64(nanotime())
- procs := int(ncpu)
- if n := atoi(gogetenv("GOMAXPROCS")); n > 0 {
- if n > _MaxGomaxprocs {
- n = _MaxGomaxprocs
- }
- procs = n
- }
- if procresize(int32(procs)) != nil {
- throw("unknown runnable goroutine during bootstrap")
- }
-
- if buildVersion == "" {
- // Condition should never trigger. This code just serves
- // to ensure runtimeĀ·buildVersion is kept in the resulting binary.
- buildVersion = "unknown"
- }
-}
-
-func dumpgstatus(gp *g) {
- _g_ := getg()
- print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
- print("runtime: g: g=", _g_, ", goid=", _g_.goid, ", g->atomicstatus=", readgstatus(_g_), "\n")
-}
-
-func checkmcount() {
- // sched lock is held
- if sched.mcount > sched.maxmcount {
- print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
- throw("thread exhaustion")
- }
-}
-
-func mcommoninit(mp *m) {
- _g_ := getg()
-
- // g0 stack won't make sense for user (and is not necessary unwindable).
- if _g_ != _g_.m.g0 {
- callers(1, mp.createstack[:])
- }
-
- mp.fastrand = 0x49f6428a + uint32(mp.id) + uint32(cputicks())
- if mp.fastrand == 0 {
- mp.fastrand = 0x49f6428a
- }
-
- lock(&sched.lock)
- mp.id = sched.mcount
- sched.mcount++
- checkmcount()
- mpreinit(mp)
- if mp.gsignal != nil {
- mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard
- }
-
- // Add to allm so garbage collector doesn't free g->m
- // when it is just in a register or thread-local storage.
- mp.alllink = allm
-
- // NumCgoCall() iterates over allm w/o schedlock,
- // so we need to publish it safely.
- atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
- unlock(&sched.lock)
-}
-
-// Mark gp ready to run.
-func ready(gp *g, traceskip int) {
- if trace.enabled {
- traceGoUnpark(gp, traceskip)
- }
-
- status := readgstatus(gp)
-
- // Mark runnable.
- _g_ := getg()
- _g_.m.locks++ // disable preemption because it can be holding p in a local var
- if status&^_Gscan != _Gwaiting {
- dumpgstatus(gp)
- throw("bad g->status in ready")
- }
-
- // status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
- casgstatus(gp, _Gwaiting, _Grunnable)
- runqput(_g_.m.p.ptr(), gp, true)
- if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 { // TODO: fast atomic
- wakep()
- }
- _g_.m.locks--
- if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
- _g_.stackguard0 = stackPreempt
- }
-}
-
-func gcprocs() int32 {
- // Figure out how many CPUs to use during GC.
- // Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
- lock(&sched.lock)
- n := gomaxprocs
- if n > ncpu {
- n = ncpu
- }
- if n > _MaxGcproc {
- n = _MaxGcproc
- }
- if n > sched.nmidle+1 { // one M is currently running
- n = sched.nmidle + 1
- }
- unlock(&sched.lock)
- return n
-}
-
-func needaddgcproc() bool {
- lock(&sched.lock)
- n := gomaxprocs
- if n > ncpu {
- n = ncpu
- }
- if n > _MaxGcproc {
- n = _MaxGcproc
- }
- n -= sched.nmidle + 1 // one M is currently running
- unlock(&sched.lock)
- return n > 0
-}
-
-func helpgc(nproc int32) {
- _g_ := getg()
- lock(&sched.lock)
- pos := 0
- for n := int32(1); n < nproc; n++ { // one M is currently running
- if allp[pos].mcache == _g_.m.mcache {
- pos++
- }
- mp := mget()
- if mp == nil {
- throw("gcprocs inconsistency")
- }
- mp.helpgc = n
- mp.p.set(allp[pos])
- mp.mcache = allp[pos].mcache
- pos++
- notewakeup(&mp.park)
- }
- unlock(&sched.lock)
-}
-
-// freezeStopWait is a large value that freezetheworld sets
-// sched.stopwait to in order to request that all Gs permanently stop.
-const freezeStopWait = 0x7fffffff
-
-// Similar to stopTheWorld but best-effort and can be called several times.
-// There is no reverse operation, used during crashing.
-// This function must not lock any mutexes.
-func freezetheworld() {
- // stopwait and preemption requests can be lost
- // due to races with concurrently executing threads,
- // so try several times
- for i := 0; i < 5; i++ {
- // this should tell the scheduler to not start any new goroutines
- sched.stopwait = freezeStopWait
- atomicstore(&sched.gcwaiting, 1)
- // this should stop running goroutines
- if !preemptall() {
- break // no running goroutines
- }
- usleep(1000)
- }
- // to be sure
- usleep(1000)
- preemptall()
- usleep(1000)
-}
-
-func isscanstatus(status uint32) bool {
- if status == _Gscan {
- throw("isscanstatus: Bad status Gscan")
- }
- return status&_Gscan == _Gscan
-}
-
-// All reads and writes of g's status go through readgstatus, casgstatus
-// castogscanstatus, casfrom_Gscanstatus.
-//go:nosplit
-func readgstatus(gp *g) uint32 {
- return atomicload(&gp.atomicstatus)
-}
-
-// Ownership of gscanvalid:
-//
-// If gp is running (meaning status == _Grunning or _Grunning|_Gscan),
-// then gp owns gp.gscanvalid, and other goroutines must not modify it.
-//
-// Otherwise, a second goroutine can lock the scan state by setting _Gscan
-// in the status bit and then modify gscanvalid, and then unlock the scan state.
-//
-// Note that the first condition implies an exception to the second:
-// if a second goroutine changes gp's status to _Grunning|_Gscan,
-// that second goroutine still does not have the right to modify gscanvalid.
-
-// The Gscanstatuses are acting like locks and this releases them.
-// If it proves to be a performance hit we should be able to make these
-// simple atomic stores but for now we are going to throw if
-// we see an inconsistent state.
-func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
- success := false
-
- // Check that transition is valid.
- switch oldval {
- default:
- print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
- dumpgstatus(gp)
- throw("casfrom_Gscanstatus:top gp->status is not in scan state")
- case _Gscanrunnable,
- _Gscanwaiting,
- _Gscanrunning,
- _Gscansyscall:
- if newval == oldval&^_Gscan {
- success = cas(&gp.atomicstatus, oldval, newval)
- }
- case _Gscanenqueue:
- if newval == _Gwaiting {
- success = cas(&gp.atomicstatus, oldval, newval)
- }
- }
- if !success {
- print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
- dumpgstatus(gp)
- throw("casfrom_Gscanstatus: gp->status is not in scan state")
- }
- if newval == _Grunning {
- gp.gcscanvalid = false
- }
-}
-
-// This will return false if the gp is not in the expected status and the cas fails.
-// This acts like a lock acquire while the casfromgstatus acts like a lock release.
-func castogscanstatus(gp *g, oldval, newval uint32) bool {
- switch oldval {
- case _Grunnable,
- _Gwaiting,
- _Gsyscall:
- if newval == oldval|_Gscan {
- return cas(&gp.atomicstatus, oldval, newval)
- }
- case _Grunning:
- if newval == _Gscanrunning || newval == _Gscanenqueue {
- return cas(&gp.atomicstatus, oldval, newval)
- }
- }
- print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
- throw("castogscanstatus")
- panic("not reached")
-}
-
-// If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
-// and casfrom_Gscanstatus instead.
-// casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
-// put it in the Gscan state is finished.
-//go:nosplit
-func casgstatus(gp *g, oldval, newval uint32) {
- if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
- systemstack(func() {
- print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
- throw("casgstatus: bad incoming values")
- })
- }
-
- if oldval == _Grunning && gp.gcscanvalid {
- // If oldvall == _Grunning, then the actual status must be
- // _Grunning or _Grunning|_Gscan; either way,
- // we own gp.gcscanvalid, so it's safe to read.
- // gp.gcscanvalid must not be true when we are running.
- print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n")
- throw("casgstatus")
- }
-
- // loop if gp->atomicstatus is in a scan state giving
- // GC time to finish and change the state to oldval.
- for !cas(&gp.atomicstatus, oldval, newval) {
- if oldval == _Gwaiting && gp.atomicstatus == _Grunnable {
- systemstack(func() {
- throw("casgstatus: waiting for Gwaiting but is Grunnable")
- })
- }
- // Help GC if needed.
- // if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) {
- // gp.preemptscan = false
- // systemstack(func() {
- // gcphasework(gp)
- // })
- // }
- }
- if newval == _Grunning {
- gp.gcscanvalid = false
- }
-}
-
-// casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable.
-// Returns old status. Cannot call casgstatus directly, because we are racing with an
-// async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus,
-// it might have become Grunnable by the time we get to the cas. If we called casgstatus,
-// it would loop waiting for the status to go back to Gwaiting, which it never will.
-//go:nosplit
-func casgcopystack(gp *g) uint32 {
- for {
- oldstatus := readgstatus(gp) &^ _Gscan
- if oldstatus != _Gwaiting && oldstatus != _Grunnable {
- throw("copystack: bad status, not Gwaiting or Grunnable")
- }
- if cas(&gp.atomicstatus, oldstatus, _Gcopystack) {
- return oldstatus
- }
- }
-}
-
-// scang blocks until gp's stack has been scanned.
-// It might be scanned by scang or it might be scanned by the goroutine itself.
-// Either way, the stack scan has completed when scang returns.
-func scang(gp *g) {
- // Invariant; we (the caller, markroot for a specific goroutine) own gp.gcscandone.
- // Nothing is racing with us now, but gcscandone might be set to true left over
- // from an earlier round of stack scanning (we scan twice per GC).
- // We use gcscandone to record whether the scan has been done during this round.
- // It is important that the scan happens exactly once: if called twice,
- // the installation of stack barriers will detect the double scan and die.
-
- gp.gcscandone = false
-
- // Endeavor to get gcscandone set to true,
- // either by doing the stack scan ourselves or by coercing gp to scan itself.
- // gp.gcscandone can transition from false to true when we're not looking
- // (if we asked for preemption), so any time we lock the status using
- // castogscanstatus we have to double-check that the scan is still not done.
- for !gp.gcscandone {
- switch s := readgstatus(gp); s {
- default:
- dumpgstatus(gp)
- throw("stopg: invalid status")
-
- case _Gdead:
- // No stack.
- gp.gcscandone = true
-
- case _Gcopystack:
- // Stack being switched. Go around again.
-
- case _Grunnable, _Gsyscall, _Gwaiting:
- // Claim goroutine by setting scan bit.
- // Racing with execution or readying of gp.
- // The scan bit keeps them from running
- // the goroutine until we're done.
- if castogscanstatus(gp, s, s|_Gscan) {
- if !gp.gcscandone {
- // Coordinate with traceback
- // in sigprof.
- for !cas(&gp.stackLock, 0, 1) {
- osyield()
- }
- scanstack(gp)
- atomicstore(&gp.stackLock, 0)
- gp.gcscandone = true
- }
- restartg(gp)
- }
-
- case _Gscanwaiting:
- // newstack is doing a scan for us right now. Wait.
-
- case _Grunning:
- // Goroutine running. Try to preempt execution so it can scan itself.
- // The preemption handler (in newstack) does the actual scan.
-
- // Optimization: if there is already a pending preemption request
- // (from the previous loop iteration), don't bother with the atomics.
- if gp.preemptscan && gp.preempt && gp.stackguard0 == stackPreempt {
- break
- }
-
- // Ask for preemption and self scan.
- if castogscanstatus(gp, _Grunning, _Gscanrunning) {
- if !gp.gcscandone {
- gp.preemptscan = true
- gp.preempt = true
- gp.stackguard0 = stackPreempt
- }
- casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
- }
- }
- }
-
- gp.preemptscan = false // cancel scan request if no longer needed
-}
-
-// The GC requests that this routine be moved from a scanmumble state to a mumble state.
-func restartg(gp *g) {
- s := readgstatus(gp)
- switch s {
- default:
- dumpgstatus(gp)
- throw("restartg: unexpected status")
-
- case _Gdead:
- // ok
-
- case _Gscanrunnable,
- _Gscanwaiting,
- _Gscansyscall:
- casfrom_Gscanstatus(gp, s, s&^_Gscan)
-
- // Scan is now completed.
- // Goroutine now needs to be made runnable.
- // We put it on the global run queue; ready blocks on the global scheduler lock.
- case _Gscanenqueue:
- casfrom_Gscanstatus(gp, _Gscanenqueue, _Gwaiting)
- if gp != getg().m.curg {
- throw("processing Gscanenqueue on wrong m")
- }
- dropg()
- ready(gp, 0)
- }
-}
-
-// stopTheWorld stops all P's from executing goroutines, interrupting
-// all goroutines at GC safe points and records reason as the reason
-// for the stop. On return, only the current goroutine's P is running.
-// stopTheWorld must not be called from a system stack and the caller
-// must not hold worldsema. The caller must call startTheWorld when
-// other P's should resume execution.
-//
-// stopTheWorld is safe for multiple goroutines to call at the
-// same time. Each will execute its own stop, and the stops will
-// be serialized.
-//
-// This is also used by routines that do stack dumps. If the system is
-// in panic or being exited, this may not reliably stop all
-// goroutines.
-func stopTheWorld(reason string) {
- semacquire(&worldsema, false)
- getg().m.preemptoff = reason
- systemstack(stopTheWorldWithSema)
-}
-
-// startTheWorld undoes the effects of stopTheWorld.
-func startTheWorld() {
- systemstack(startTheWorldWithSema)
- // worldsema must be held over startTheWorldWithSema to ensure
- // gomaxprocs cannot change while worldsema is held.
- semrelease(&worldsema)
- getg().m.preemptoff = ""
-}
-
-// Holding worldsema grants an M the right to try to stop the world
-// and prevents gomaxprocs from changing concurrently.
-var worldsema uint32 = 1
-
-// stopTheWorldWithSema is the core implementation of stopTheWorld.
-// The caller is responsible for acquiring worldsema and disabling
-// preemption first and then should stopTheWorldWithSema on the system
-// stack:
-//
-// semacquire(&worldsema, false)
-// m.preemptoff = "reason"
-// systemstack(stopTheWorldWithSema)
-//
-// When finished, the caller must either call startTheWorld or undo
-// these three operations separately:
-//
-// m.preemptoff = ""
-// systemstack(startTheWorldWithSema)
-// semrelease(&worldsema)
-//
-// It is allowed to acquire worldsema once and then execute multiple
-// startTheWorldWithSema/stopTheWorldWithSema pairs.
-// Other P's are able to execute between successive calls to
-// startTheWorldWithSema and stopTheWorldWithSema.
-// Holding worldsema causes any other goroutines invoking
-// stopTheWorld to block.
-func stopTheWorldWithSema() {
- _g_ := getg()
-
- // If we hold a lock, then we won't be able to stop another M
- // that is blocked trying to acquire the lock.
- if _g_.m.locks > 0 {
- throw("stopTheWorld: holding locks")
- }
-
- lock(&sched.lock)
- sched.stopwait = gomaxprocs
- atomicstore(&sched.gcwaiting, 1)
- preemptall()
- // stop current P
- _g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic.
- sched.stopwait--
- // try to retake all P's in Psyscall status
- for i := 0; i < int(gomaxprocs); i++ {
- p := allp[i]
- s := p.status
- if s == _Psyscall && cas(&p.status, s, _Pgcstop) {
- if trace.enabled {
- traceGoSysBlock(p)
- traceProcStop(p)
- }
- p.syscalltick++
- sched.stopwait--
- }
- }
- // stop idle P's
- for {
- p := pidleget()
- if p == nil {
- break
- }
- p.status = _Pgcstop
- sched.stopwait--
- }
- wait := sched.stopwait > 0
- unlock(&sched.lock)
-
- // wait for remaining P's to stop voluntarily
- if wait {
- for {
- // wait for 100us, then try to re-preempt in case of any races
- if notetsleep(&sched.stopnote, 100*1000) {
- noteclear(&sched.stopnote)
- break
- }
- preemptall()
- }
- }
- if sched.stopwait != 0 {
- throw("stopTheWorld: not stopped")
- }
- for i := 0; i < int(gomaxprocs); i++ {
- p := allp[i]
- if p.status != _Pgcstop {
- throw("stopTheWorld: not stopped")
- }
- }
-}
-
-func mhelpgc() {
- _g_ := getg()
- _g_.m.helpgc = -1
-}
-
-func startTheWorldWithSema() {
- _g_ := getg()
-
- _g_.m.locks++ // disable preemption because it can be holding p in a local var
- gp := netpoll(false) // non-blocking
- injectglist(gp)
- add := needaddgcproc()
- lock(&sched.lock)
-
- procs := gomaxprocs
- if newprocs != 0 {
- procs = newprocs
- newprocs = 0
- }
- p1 := procresize(procs)
- sched.gcwaiting = 0
- if sched.sysmonwait != 0 {
- sched.sysmonwait = 0
- notewakeup(&sched.sysmonnote)
- }
- unlock(&sched.lock)
-
- for p1 != nil {
- p := p1
- p1 = p1.link.ptr()
- if p.m != 0 {
- mp := p.m.ptr()
- p.m = 0
- if mp.nextp != 0 {
- throw("startTheWorld: inconsistent mp->nextp")
- }
- mp.nextp.set(p)
- notewakeup(&mp.park)
- } else {
- // Start M to run P. Do not start another M below.
- newm(nil, p)
- add = false
- }
- }
-
- // Wakeup an additional proc in case we have excessive runnable goroutines
- // in local queues or in the global queue. If we don't, the proc will park itself.
- // If we have lots of excessive work, resetspinning will unpark additional procs as necessary.
- if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 {
- wakep()
- }
-
- if add {
- // If GC could have used another helper proc, start one now,
- // in the hope that it will be available next time.
- // It would have been even better to start it before the collection,
- // but doing so requires allocating memory, so it's tricky to
- // coordinate. This lazy approach works out in practice:
- // we don't mind if the first couple gc rounds don't have quite
- // the maximum number of procs.
- newm(mhelpgc, nil)
- }
- _g_.m.locks--
- if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
- _g_.stackguard0 = stackPreempt
- }
-}
-
-// Called to start an M.
-//go:nosplit
-func mstart() {
- _g_ := getg()
-
- if _g_.stack.lo == 0 {
- // Initialize stack bounds from system stack.
- // Cgo may have left stack size in stack.hi.
- size := _g_.stack.hi
- if size == 0 {
- size = 8192 * stackGuardMultiplier
- }
- _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size)))
- _g_.stack.lo = _g_.stack.hi - size + 1024
- }
- // Initialize stack guards so that we can start calling
- // both Go and C functions with stack growth prologues.
- _g_.stackguard0 = _g_.stack.lo + _StackGuard
- _g_.stackguard1 = _g_.stackguard0
- mstart1()
-}
-
-func mstart1() {
- _g_ := getg()
-
- if _g_ != _g_.m.g0 {
- throw("bad runtimeĀ·mstart")
- }
-
- // Record top of stack for use by mcall.
- // Once we call schedule we're never coming back,
- // so other calls can reuse this stack space.
- gosave(&_g_.m.g0.sched)
- _g_.m.g0.sched.pc = ^uintptr(0) // make sure it is never used
- asminit()
- minit()
-
- // Install signal handlers; after minit so that minit can
- // prepare the thread to be able to handle the signals.
- if _g_.m == &m0 {
- // Create an extra M for callbacks on threads not created by Go.
- if iscgo && !cgoHasExtraM {
- cgoHasExtraM = true
- newextram()
- }
- initsig()
- }
-
- if fn := _g_.m.mstartfn; fn != nil {
- fn()
- }
-
- if _g_.m.helpgc != 0 {
- _g_.m.helpgc = 0
- stopm()
- } else if _g_.m != &m0 {
- acquirep(_g_.m.nextp.ptr())
- _g_.m.nextp = 0
- }
- schedule()
-}
-
-// forEachP calls fn(p) for every P p when p reaches a GC safe point.
-// If a P is currently executing code, this will bring the P to a GC
-// safe point and execute fn on that P. If the P is not executing code
-// (it is idle or in a syscall), this will call fn(p) directly while
-// preventing the P from exiting its state. This does not ensure that
-// fn will run on every CPU executing Go code, but it acts as a global
-// memory barrier. GC uses this as a "ragged barrier."
-//
-// The caller must hold worldsema.
-func forEachP(fn func(*p)) {
- mp := acquirem()
- _p_ := getg().m.p.ptr()
-
- lock(&sched.lock)
- if sched.safePointWait != 0 {
- throw("forEachP: sched.safePointWait != 0")
- }
- sched.safePointWait = gomaxprocs - 1
- sched.safePointFn = fn
-
- // Ask all Ps to run the safe point function.
- for _, p := range allp[:gomaxprocs] {
- if p != _p_ {
- atomicstore(&p.runSafePointFn, 1)
- }
- }
- preemptall()
-
- // Any P entering _Pidle or _Psyscall from now on will observe
- // p.runSafePointFn == 1 and will call runSafePointFn when
- // changing its status to _Pidle/_Psyscall.
-
- // Run safe point function for all idle Ps. sched.pidle will
- // not change because we hold sched.lock.
- for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() {
- if cas(&p.runSafePointFn, 1, 0) {
- fn(p)
- sched.safePointWait--
- }
- }
-
- wait := sched.safePointWait > 0
- unlock(&sched.lock)
-
- // Run fn for the current P.
- fn(_p_)
-
- // Force Ps currently in _Psyscall into _Pidle and hand them
- // off to induce safe point function execution.
- for i := 0; i < int(gomaxprocs); i++ {
- p := allp[i]
- s := p.status
- if s == _Psyscall && p.runSafePointFn == 1 && cas(&p.status, s, _Pidle) {
- if trace.enabled {
- traceGoSysBlock(p)
- traceProcStop(p)
- }
- p.syscalltick++
- handoffp(p)
- }
- }
-
- // Wait for remaining Ps to run fn.
- if wait {
- for {
- // Wait for 100us, then try to re-preempt in
- // case of any races.
- if notetsleep(&sched.safePointNote, 100*1000) {
- noteclear(&sched.safePointNote)
- break
- }
- preemptall()
- }
- }
- if sched.safePointWait != 0 {
- throw("forEachP: not done")
- }
- for i := 0; i < int(gomaxprocs); i++ {
- p := allp[i]
- if p.runSafePointFn != 0 {
- throw("forEachP: P did not run fn")
- }
- }
-
- lock(&sched.lock)
- sched.safePointFn = nil
- unlock(&sched.lock)
- releasem(mp)
-}
-
-// runSafePointFn runs the safe point function, if any, for this P.
-// This should be called like
-//
-// if getg().m.p.runSafePointFn != 0 {
-// runSafePointFn()
-// }
-//
-// runSafePointFn must be checked on any transition in to _Pidle or
-// _Psyscall to avoid a race where forEachP sees that the P is running
-// just before the P goes into _Pidle/_Psyscall and neither forEachP
-// nor the P run the safe-point function.
-func runSafePointFn() {
- p := getg().m.p.ptr()
- // Resolve the race between forEachP running the safe-point
- // function on this P's behalf and this P running the
- // safe-point function directly.
- if !cas(&p.runSafePointFn, 1, 0) {
- return
- }
- sched.safePointFn(p)
- lock(&sched.lock)
- sched.safePointWait--
- if sched.safePointWait == 0 {
- notewakeup(&sched.safePointNote)
- }
- unlock(&sched.lock)
-}
-
-// When running with cgo, we call _cgo_thread_start
-// to start threads for us so that we can play nicely with
-// foreign code.
-var cgoThreadStart unsafe.Pointer
-
-type cgothreadstart struct {
- g guintptr
- tls *uint64
- fn unsafe.Pointer
-}
-
-// Allocate a new m unassociated with any thread.
-// Can use p for allocation context if needed.
-// fn is recorded as the new m's m.mstartfn.
-func allocm(_p_ *p, fn func()) *m {
- _g_ := getg()
- _g_.m.locks++ // disable GC because it can be called from sysmon
- if _g_.m.p == 0 {
- acquirep(_p_) // temporarily borrow p for mallocs in this function
- }
- mp := new(m)
- mp.mstartfn = fn
- mcommoninit(mp)
-
- // In case of cgo or Solaris, pthread_create will make us a stack.
- // Windows and Plan 9 will layout sched stack on OS stack.
- if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" {
- mp.g0 = malg(-1)
- } else {
- mp.g0 = malg(8192 * stackGuardMultiplier)
- }
- mp.g0.m = mp
-
- if _p_ == _g_.m.p.ptr() {
- releasep()
- }
- _g_.m.locks--
- if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
- _g_.stackguard0 = stackPreempt
- }
-
- return mp
-}
-
-// needm is called when a cgo callback happens on a
-// thread without an m (a thread not created by Go).
-// In this case, needm is expected to find an m to use
-// and return with m, g initialized correctly.
-// Since m and g are not set now (likely nil, but see below)
-// needm is limited in what routines it can call. In particular
-// it can only call nosplit functions (textflag 7) and cannot
-// do any scheduling that requires an m.
-//
-// In order to avoid needing heavy lifting here, we adopt
-// the following strategy: there is a stack of available m's
-// that can be stolen. Using compare-and-swap
-// to pop from the stack has ABA races, so we simulate
-// a lock by doing an exchange (via casp) to steal the stack
-// head and replace the top pointer with MLOCKED (1).
-// This serves as a simple spin lock that we can use even
-// without an m. The thread that locks the stack in this way
-// unlocks the stack by storing a valid stack head pointer.
-//
-// In order to make sure that there is always an m structure
-// available to be stolen, we maintain the invariant that there
-// is always one more than needed. At the beginning of the
-// program (if cgo is in use) the list is seeded with a single m.
-// If needm finds that it has taken the last m off the list, its job
-// is - once it has installed its own m so that it can do things like
-// allocate memory - to create a spare m and put it on the list.
-//
-// Each of these extra m's also has a g0 and a curg that are
-// pressed into service as the scheduling stack and current
-// goroutine for the duration of the cgo callback.
-//
-// When the callback is done with the m, it calls dropm to
-// put the m back on the list.
-//go:nosplit
-func needm(x byte) {
- if iscgo && !cgoHasExtraM {
- // Can happen if C/C++ code calls Go from a global ctor.
- // Can not throw, because scheduler is not initialized yet.
- write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback)))
- exit(1)
- }
-
- // Lock extra list, take head, unlock popped list.
- // nilokay=false is safe here because of the invariant above,
- // that the extra list always contains or will soon contain
- // at least one m.
- mp := lockextra(false)
-
- // Set needextram when we've just emptied the list,
- // so that the eventual call into cgocallbackg will
- // allocate a new m for the extra list. We delay the
- // allocation until then so that it can be done
- // after exitsyscall makes sure it is okay to be
- // running at all (that is, there's no garbage collection
- // running right now).
- mp.needextram = mp.schedlink == 0
- unlockextra(mp.schedlink.ptr())
-
- // Install g (= m->g0) and set the stack bounds
- // to match the current stack. We don't actually know
- // how big the stack is, like we don't know how big any
- // scheduling stack is, but we assume there's at least 32 kB,
- // which is more than enough for us.
- setg(mp.g0)
- _g_ := getg()
- _g_.stack.hi = uintptr(noescape(unsafe.Pointer(&x))) + 1024
- _g_.stack.lo = uintptr(noescape(unsafe.Pointer(&x))) - 32*1024
- _g_.stackguard0 = _g_.stack.lo + _StackGuard
-
- msigsave(mp)
- // Initialize this thread to use the m.
- asminit()
- minit()
-}
-
-var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n")
-
-// newextram allocates an m and puts it on the extra list.
-// It is called with a working local m, so that it can do things
-// like call schedlock and allocate.
-func newextram() {
- // Create extra goroutine locked to extra m.
- // The goroutine is the context in which the cgo callback will run.
- // The sched.pc will never be returned to, but setting it to
- // goexit makes clear to the traceback routines where
- // the goroutine stack ends.
- mp := allocm(nil, nil)
- gp := malg(4096)
- gp.sched.pc = funcPC(goexit) + _PCQuantum
- gp.sched.sp = gp.stack.hi
- gp.sched.sp -= 4 * regSize // extra space in case of reads slightly beyond frame
- gp.sched.lr = 0
- gp.sched.g = guintptr(unsafe.Pointer(gp))
- gp.syscallpc = gp.sched.pc
- gp.syscallsp = gp.sched.sp
- gp.stktopsp = gp.sched.sp
- // malg returns status as Gidle, change to Gsyscall before adding to allg
- // where GC will see it.
- casgstatus(gp, _Gidle, _Gsyscall)
- gp.m = mp
- mp.curg = gp
- mp.locked = _LockInternal
- mp.lockedg = gp
- gp.lockedm = mp
- gp.goid = int64(xadd64(&sched.goidgen, 1))
- if raceenabled {
- gp.racectx = racegostart(funcPC(newextram))
- }
- // put on allg for garbage collector
- allgadd(gp)
-
- // Add m to the extra list.
- mnext := lockextra(true)
- mp.schedlink.set(mnext)
- unlockextra(mp)
-}
-
-// dropm is called when a cgo callback has called needm but is now
-// done with the callback and returning back into the non-Go thread.
-// It puts the current m back onto the extra list.
-//
-// The main expense here is the call to signalstack to release the
-// m's signal stack, and then the call to needm on the next callback
-// from this thread. It is tempting to try to save the m for next time,
-// which would eliminate both these costs, but there might not be
-// a next time: the current thread (which Go does not control) might exit.
-// If we saved the m for that thread, there would be an m leak each time
-// such a thread exited. Instead, we acquire and release an m on each
-// call. These should typically not be scheduling operations, just a few
-// atomics, so the cost should be small.
-//
-// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
-// variable using pthread_key_create. Unlike the pthread keys we already use
-// on OS X, this dummy key would never be read by Go code. It would exist
-// only so that we could register at thread-exit-time destructor.
-// That destructor would put the m back onto the extra list.
-// This is purely a performance optimization. The current version,
-// in which dropm happens on each cgo call, is still correct too.
-// We may have to keep the current version on systems with cgo
-// but without pthreads, like Windows.
-func dropm() {
- // Undo whatever initialization minit did during needm.
- unminit()
-
- // Clear m and g, and return m to the extra list.
- // After the call to setg we can only call nosplit functions
- // with no pointer manipulation.
- mp := getg().m
- mnext := lockextra(true)
- mp.schedlink.set(mnext)
-
- setg(nil)
- unlockextra(mp)
-}
-
-var extram uintptr
-
-// lockextra locks the extra list and returns the list head.
-// The caller must unlock the list by storing a new list head
-// to extram. If nilokay is true, then lockextra will
-// return a nil list head if that's what it finds. If nilokay is false,
-// lockextra will keep waiting until the list head is no longer nil.
-//go:nosplit
-func lockextra(nilokay bool) *m {
- const locked = 1
-
- for {
- old := atomicloaduintptr(&extram)
- if old == locked {
- yield := osyield
- yield()
- continue
- }
- if old == 0 && !nilokay {
- usleep(1)
- continue
- }
- if casuintptr(&extram, old, locked) {
- return (*m)(unsafe.Pointer(old))
- }
- yield := osyield
- yield()
- continue
- }
-}
-
-//go:nosplit
-func unlockextra(mp *m) {
- atomicstoreuintptr(&extram, uintptr(unsafe.Pointer(mp)))
-}
-
-// Create a new m. It will start off with a call to fn, or else the scheduler.
-// fn needs to be static and not a heap allocated closure.
-// May run with m.p==nil, so write barriers are not allowed.
-//go:nowritebarrier
-func newm(fn func(), _p_ *p) {
- mp := allocm(_p_, fn)
- mp.nextp.set(_p_)
- msigsave(mp)
- if iscgo {
- var ts cgothreadstart
- if _cgo_thread_start == nil {
- throw("_cgo_thread_start missing")
- }
- ts.g.set(mp.g0)
- ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0]))
- ts.fn = unsafe.Pointer(funcPC(mstart))
- asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts))
- return
- }
- newosproc(mp, unsafe.Pointer(mp.g0.stack.hi))
-}
-
-// Stops execution of the current m until new work is available.
-// Returns with acquired P.
-func stopm() {
- _g_ := getg()
-
- if _g_.m.locks != 0 {
- throw("stopm holding locks")
- }
- if _g_.m.p != 0 {
- throw("stopm holding p")
- }
- if _g_.m.spinning {
- _g_.m.spinning = false
- xadd(&sched.nmspinning, -1)
- }
-
-retry:
- lock(&sched.lock)
- mput(_g_.m)
- unlock(&sched.lock)
- notesleep(&_g_.m.park)
- noteclear(&_g_.m.park)
- if _g_.m.helpgc != 0 {
- gchelper()
- _g_.m.helpgc = 0
- _g_.m.mcache = nil
- _g_.m.p = 0
- goto retry
- }
- acquirep(_g_.m.nextp.ptr())
- _g_.m.nextp = 0
-}
-
-func mspinning() {
- gp := getg()
- if !runqempty(gp.m.nextp.ptr()) {
- // Something (presumably the GC) was readied while the
- // runtime was starting up this M, so the M is no
- // longer spinning.
- if int32(xadd(&sched.nmspinning, -1)) < 0 {
- throw("mspinning: nmspinning underflowed")
- }
- } else {
- gp.m.spinning = true
- }
-}
-
-// Schedules some M to run the p (creates an M if necessary).
-// If p==nil, tries to get an idle P, if no idle P's does nothing.
-// May run with m.p==nil, so write barriers are not allowed.
-//go:nowritebarrier
-func startm(_p_ *p, spinning bool) {
- lock(&sched.lock)
- if _p_ == nil {
- _p_ = pidleget()
- if _p_ == nil {
- unlock(&sched.lock)
- if spinning {
- xadd(&sched.nmspinning, -1)
- }
- return
- }
- }
- mp := mget()
- unlock(&sched.lock)
- if mp == nil {
- var fn func()
- if spinning {
- fn = mspinning
- }
- newm(fn, _p_)
- return
- }
- if mp.spinning {
- throw("startm: m is spinning")
- }
- if mp.nextp != 0 {
- throw("startm: m has p")
- }
- if spinning && !runqempty(_p_) {
- throw("startm: p has runnable gs")
- }
- mp.spinning = spinning
- mp.nextp.set(_p_)
- notewakeup(&mp.park)
-}
-
-// Hands off P from syscall or locked M.
-// Always runs without a P, so write barriers are not allowed.
-//go:nowritebarrier
-func handoffp(_p_ *p) {
- // if it has local work, start it straight away
- if !runqempty(_p_) || sched.runqsize != 0 {
- startm(_p_, false)
- return
- }
- // no local work, check that there are no spinning/idle M's,
- // otherwise our help is not required
- if atomicload(&sched.nmspinning)+atomicload(&sched.npidle) == 0 && cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
- startm(_p_, true)
- return
- }
- lock(&sched.lock)
- if sched.gcwaiting != 0 {
- _p_.status = _Pgcstop
- sched.stopwait--
- if sched.stopwait == 0 {
- notewakeup(&sched.stopnote)
- }
- unlock(&sched.lock)
- return
- }
- if _p_.runSafePointFn != 0 && cas(&_p_.runSafePointFn, 1, 0) {
- sched.safePointFn(_p_)
- sched.safePointWait--
- if sched.safePointWait == 0 {
- notewakeup(&sched.safePointNote)
- }
- }
- if sched.runqsize != 0 {
- unlock(&sched.lock)
- startm(_p_, false)
- return
- }
- // If this is the last running P and nobody is polling network,
- // need to wakeup another M to poll network.
- if sched.npidle == uint32(gomaxprocs-1) && atomicload64(&sched.lastpoll) != 0 {
- unlock(&sched.lock)
- startm(_p_, false)
- return
- }
- pidleput(_p_)
- unlock(&sched.lock)
-}
-
-// Tries to add one more P to execute G's.
-// Called when a G is made runnable (newproc, ready).
-func wakep() {
- // be conservative about spinning threads
- if !cas(&sched.nmspinning, 0, 1) {
- return
- }
- startm(nil, true)
-}
-
-// Stops execution of the current m that is locked to a g until the g is runnable again.
-// Returns with acquired P.
-func stoplockedm() {
- _g_ := getg()
-
- if _g_.m.lockedg == nil || _g_.m.lockedg.lockedm != _g_.m {
- throw("stoplockedm: inconsistent locking")
- }
- if _g_.m.p != 0 {
- // Schedule another M to run this p.
- _p_ := releasep()
- handoffp(_p_)
- }
- incidlelocked(1)
- // Wait until another thread schedules lockedg again.
- notesleep(&_g_.m.park)
- noteclear(&_g_.m.park)
- status := readgstatus(_g_.m.lockedg)
- if status&^_Gscan != _Grunnable {
- print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n")
- dumpgstatus(_g_)
- throw("stoplockedm: not runnable")
- }
- acquirep(_g_.m.nextp.ptr())
- _g_.m.nextp = 0
-}
-
-// Schedules the locked m to run the locked gp.
-// May run during STW, so write barriers are not allowed.
-//go:nowritebarrier
-func startlockedm(gp *g) {
- _g_ := getg()
-
- mp := gp.lockedm
- if mp == _g_.m {
- throw("startlockedm: locked to me")
- }
- if mp.nextp != 0 {
- throw("startlockedm: m has p")
- }
- // directly handoff current P to the locked m
- incidlelocked(-1)
- _p_ := releasep()
- mp.nextp.set(_p_)
- notewakeup(&mp.park)
- stopm()
-}
-
-// Stops the current m for stopTheWorld.
-// Returns when the world is restarted.
-func gcstopm() {
- _g_ := getg()
-
- if sched.gcwaiting == 0 {
- throw("gcstopm: not waiting for gc")
- }
- if _g_.m.spinning {
- _g_.m.spinning = false
- xadd(&sched.nmspinning, -1)
- }
- _p_ := releasep()
- lock(&sched.lock)
- _p_.status = _Pgcstop
- sched.stopwait--
- if sched.stopwait == 0 {
- notewakeup(&sched.stopnote)
- }
- unlock(&sched.lock)
- stopm()
-}
-
-// Schedules gp to run on the current M.
-// If inheritTime is true, gp inherits the remaining time in the
-// current time slice. Otherwise, it starts a new time slice.
-// Never returns.
-func execute(gp *g, inheritTime bool) {
- _g_ := getg()
-
- casgstatus(gp, _Grunnable, _Grunning)
- gp.waitsince = 0
- gp.preempt = false
- gp.stackguard0 = gp.stack.lo + _StackGuard
- if !inheritTime {
- _g_.m.p.ptr().schedtick++
- }
- _g_.m.curg = gp
- gp.m = _g_.m
-
- // Check whether the profiler needs to be turned on or off.
- hz := sched.profilehz
- if _g_.m.profilehz != hz {
- resetcpuprofiler(hz)
- }
-
- if trace.enabled {
- // GoSysExit has to happen when we have a P, but before GoStart.
- // So we emit it here.
- if gp.syscallsp != 0 && gp.sysblocktraced {
- // Since gp.sysblocktraced is true, we must emit an event.
- // There is a race between the code that initializes sysexitseq
- // and sysexitticks (in exitsyscall, which runs without a P,
- // and therefore is not stopped with the rest of the world)
- // and the code that initializes a new trace.
- // The recorded sysexitseq and sysexitticks must therefore
- // be treated as "best effort". If they are valid for this trace,
- // then great, use them for greater accuracy.
- // But if they're not valid for this trace, assume that the
- // trace was started after the actual syscall exit (but before
- // we actually managed to start the goroutine, aka right now),
- // and assign a fresh time stamp to keep the log consistent.
- seq, ts := gp.sysexitseq, gp.sysexitticks
- if seq == 0 || int64(seq)-int64(trace.seqStart) < 0 {
- seq, ts = tracestamp()
- }
- traceGoSysExit(seq, ts)
- }
- traceGoStart()
- }
-
- gogo(&gp.sched)
-}
-
-// Finds a runnable goroutine to execute.
-// Tries to steal from other P's, get g from global queue, poll network.
-func findrunnable() (gp *g, inheritTime bool) {
- _g_ := getg()
-
-top:
- if sched.gcwaiting != 0 {
- gcstopm()
- goto top
- }
- if _g_.m.p.ptr().runSafePointFn != 0 {
- runSafePointFn()
- }
- if fingwait && fingwake {
- if gp := wakefing(); gp != nil {
- ready(gp, 0)
- }
- }
-
- // local runq
- if gp, inheritTime := runqget(_g_.m.p.ptr()); gp != nil {
- return gp, inheritTime
- }
-
- // global runq
- if sched.runqsize != 0 {
- lock(&sched.lock)
- gp := globrunqget(_g_.m.p.ptr(), 0)
- unlock(&sched.lock)
- if gp != nil {
- return gp, false
- }
- }
-
- // Poll network.
- // This netpoll is only an optimization before we resort to stealing.
- // We can safely skip it if there a thread blocked in netpoll already.
- // If there is any kind of logical race with that blocked thread
- // (e.g. it has already returned from netpoll, but does not set lastpoll yet),
- // this thread will do blocking netpoll below anyway.
- if netpollinited() && sched.lastpoll != 0 {
- if gp := netpoll(false); gp != nil { // non-blocking
- // netpoll returns list of goroutines linked by schedlink.
- injectglist(gp.schedlink.ptr())
- casgstatus(gp, _Gwaiting, _Grunnable)
- if trace.enabled {
- traceGoUnpark(gp, 0)
- }
- return gp, false
- }
- }
-
- // If number of spinning M's >= number of busy P's, block.
- // This is necessary to prevent excessive CPU consumption
- // when GOMAXPROCS>>1 but the program parallelism is low.
- if !_g_.m.spinning && 2*atomicload(&sched.nmspinning) >= uint32(gomaxprocs)-atomicload(&sched.npidle) { // TODO: fast atomic
- goto stop
- }
- if !_g_.m.spinning {
- _g_.m.spinning = true
- xadd(&sched.nmspinning, 1)
- }
- // random steal from other P's
- for i := 0; i < int(4*gomaxprocs); i++ {
- if sched.gcwaiting != 0 {
- goto top
- }
- _p_ := allp[fastrand1()%uint32(gomaxprocs)]
- var gp *g
- if _p_ == _g_.m.p.ptr() {
- gp, _ = runqget(_p_)
- } else {
- stealRunNextG := i > 2*int(gomaxprocs) // first look for ready queues with more than 1 g
- gp = runqsteal(_g_.m.p.ptr(), _p_, stealRunNextG)
- }
- if gp != nil {
- return gp, false
- }
- }
-
-stop:
-
- // We have nothing to do. If we're in the GC mark phase and can
- // safely scan and blacken objects, run idle-time marking
- // rather than give up the P.
- if _p_ := _g_.m.p.ptr(); gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != nil && gcMarkWorkAvailable(_p_) {
- _p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
- gp := _p_.gcBgMarkWorker
- casgstatus(gp, _Gwaiting, _Grunnable)
- if trace.enabled {
- traceGoUnpark(gp, 0)
- }
- return gp, false
- }
-
- // return P and block
- lock(&sched.lock)
- if sched.gcwaiting != 0 || _g_.m.p.ptr().runSafePointFn != 0 {
- unlock(&sched.lock)
- goto top
- }
- if sched.runqsize != 0 {
- gp := globrunqget(_g_.m.p.ptr(), 0)
- unlock(&sched.lock)
- return gp, false
- }
- _p_ := releasep()
- pidleput(_p_)
- unlock(&sched.lock)
- if _g_.m.spinning {
- _g_.m.spinning = false
- xadd(&sched.nmspinning, -1)
- }
-
- // check all runqueues once again
- for i := 0; i < int(gomaxprocs); i++ {
- _p_ := allp[i]
- if _p_ != nil && !runqempty(_p_) {
- lock(&sched.lock)
- _p_ = pidleget()
- unlock(&sched.lock)
- if _p_ != nil {
- acquirep(_p_)
- goto top
- }
- break
- }
- }
-
- // poll network
- if netpollinited() && xchg64(&sched.lastpoll, 0) != 0 {
- if _g_.m.p != 0 {
- throw("findrunnable: netpoll with p")
- }
- if _g_.m.spinning {
- throw("findrunnable: netpoll with spinning")
- }
- gp := netpoll(true) // block until new work is available
- atomicstore64(&sched.lastpoll, uint64(nanotime()))
- if gp != nil {
- lock(&sched.lock)
- _p_ = pidleget()
- unlock(&sched.lock)
- if _p_ != nil {
- acquirep(_p_)
- injectglist(gp.schedlink.ptr())
- casgstatus(gp, _Gwaiting, _Grunnable)
- if trace.enabled {
- traceGoUnpark(gp, 0)
- }
- return gp, false
- }
- injectglist(gp)
- }
- }
- stopm()
- goto top
-}
-
-func resetspinning() {
- _g_ := getg()
-
- var nmspinning uint32
- if _g_.m.spinning {
- _g_.m.spinning = false
- nmspinning = xadd(&sched.nmspinning, -1)
- if int32(nmspinning) < 0 {
- throw("findrunnable: negative nmspinning")
- }
- } else {
- nmspinning = atomicload(&sched.nmspinning)
- }
-
- // M wakeup policy is deliberately somewhat conservative (see nmspinning handling),
- // so see if we need to wakeup another P here.
- if nmspinning == 0 && atomicload(&sched.npidle) > 0 {
- wakep()
- }
-}
-
-// Injects the list of runnable G's into the scheduler.
-// Can run concurrently with GC.
-func injectglist(glist *g) {
- if glist == nil {
- return
- }
- if trace.enabled {
- for gp := glist; gp != nil; gp = gp.schedlink.ptr() {
- traceGoUnpark(gp, 0)
- }
- }
- lock(&sched.lock)
- var n int
- for n = 0; glist != nil; n++ {
- gp := glist
- glist = gp.schedlink.ptr()
- casgstatus(gp, _Gwaiting, _Grunnable)
- globrunqput(gp)
- }
- unlock(&sched.lock)
- for ; n != 0 && sched.npidle != 0; n-- {
- startm(nil, false)
- }
-}
-
-// One round of scheduler: find a runnable goroutine and execute it.
-// Never returns.
-func schedule() {
- _g_ := getg()
-
- if _g_.m.locks != 0 {
- throw("schedule: holding locks")
- }
-
- if _g_.m.lockedg != nil {
- stoplockedm()
- execute(_g_.m.lockedg, false) // Never returns.
- }
-
-top:
- if sched.gcwaiting != 0 {
- gcstopm()
- goto top
- }
- if _g_.m.p.ptr().runSafePointFn != 0 {
- runSafePointFn()
- }
-
- var gp *g
- var inheritTime bool
- if trace.enabled || trace.shutdown {
- gp = traceReader()
- if gp != nil {
- casgstatus(gp, _Gwaiting, _Grunnable)
- traceGoUnpark(gp, 0)
- resetspinning()
- }
- }
- if gp == nil && gcBlackenEnabled != 0 {
- gp = gcController.findRunnableGCWorker(_g_.m.p.ptr())
- if gp != nil {
- resetspinning()
- }
- }
- if gp == nil {
- // Check the global runnable queue once in a while to ensure fairness.
- // Otherwise two goroutines can completely occupy the local runqueue
- // by constantly respawning each other.
- if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
- lock(&sched.lock)
- gp = globrunqget(_g_.m.p.ptr(), 1)
- unlock(&sched.lock)
- if gp != nil {
- resetspinning()
- }
- }
- }
- if gp == nil {
- gp, inheritTime = runqget(_g_.m.p.ptr())
- if gp != nil && _g_.m.spinning {
- throw("schedule: spinning with local work")
- }
- }
- if gp == nil {
- gp, inheritTime = findrunnable() // blocks until work is available
- resetspinning()
- }
-
- if gp.lockedm != nil {
- // Hands off own p to the locked m,
- // then blocks waiting for a new p.
- startlockedm(gp)
- goto top
- }
-
- execute(gp, inheritTime)
-}
-
-// dropg removes the association between m and the current goroutine m->curg (gp for short).
-// Typically a caller sets gp's status away from Grunning and then
-// immediately calls dropg to finish the job. The caller is also responsible
-// for arranging that gp will be restarted using ready at an
-// appropriate time. After calling dropg and arranging for gp to be
-// readied later, the caller can do other work but eventually should
-// call schedule to restart the scheduling of goroutines on this m.
-func dropg() {
- _g_ := getg()
-
- if _g_.m.lockedg == nil {
- _g_.m.curg.m = nil
- _g_.m.curg = nil
- }
-}
-
-func parkunlock_c(gp *g, lock unsafe.Pointer) bool {
- unlock((*mutex)(lock))
- return true
-}
-
-// park continuation on g0.
-func park_m(gp *g) {
- _g_ := getg()
-
- if trace.enabled {
- traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip, gp)
- }
-
- casgstatus(gp, _Grunning, _Gwaiting)
- dropg()
-
- if _g_.m.waitunlockf != nil {
- fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf))
- ok := fn(gp, _g_.m.waitlock)
- _g_.m.waitunlockf = nil
- _g_.m.waitlock = nil
- if !ok {
- if trace.enabled {
- traceGoUnpark(gp, 2)
- }
- casgstatus(gp, _Gwaiting, _Grunnable)
- execute(gp, true) // Schedule it back, never returns.
- }
- }
- schedule()
-}
-
-func goschedImpl(gp *g) {
- status := readgstatus(gp)
- if status&^_Gscan != _Grunning {
- dumpgstatus(gp)
- throw("bad g status")
- }
- casgstatus(gp, _Grunning, _Grunnable)
- dropg()
- lock(&sched.lock)
- globrunqput(gp)
- unlock(&sched.lock)
-
- schedule()
-}
-
-// Gosched continuation on g0.
-func gosched_m(gp *g) {
- if trace.enabled {
- traceGoSched()
- }
- goschedImpl(gp)
-}
-
-func gopreempt_m(gp *g) {
- if trace.enabled {
- traceGoPreempt()
- }
- goschedImpl(gp)
-}
-
-// Finishes execution of the current goroutine.
-func goexit1() {
- if raceenabled {
- racegoend()
- }
- if trace.enabled {
- traceGoEnd()
- }
- mcall(goexit0)
-}
-
-// goexit continuation on g0.
-func goexit0(gp *g) {
- _g_ := getg()
-
- casgstatus(gp, _Grunning, _Gdead)
- gp.m = nil
- gp.lockedm = nil
- _g_.m.lockedg = nil
- gp.paniconfault = false
- gp._defer = nil // should be true already but just in case.
- gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
- gp.writebuf = nil
- gp.waitreason = ""
- gp.param = nil
-
- dropg()
-
- if _g_.m.locked&^_LockExternal != 0 {
- print("invalid m->locked = ", _g_.m.locked, "\n")
- throw("internal lockOSThread error")
- }
- _g_.m.locked = 0
- gfput(_g_.m.p.ptr(), gp)
- schedule()
-}
-
-//go:nosplit
-//go:nowritebarrier
-func save(pc, sp uintptr) {
- _g_ := getg()
-
- _g_.sched.pc = pc
- _g_.sched.sp = sp
- _g_.sched.lr = 0
- _g_.sched.ret = 0
- _g_.sched.ctxt = nil
- _g_.sched.g = guintptr(unsafe.Pointer(_g_))
-}
-
-// The goroutine g is about to enter a system call.
-// Record that it's not using the cpu anymore.
-// This is called only from the go syscall library and cgocall,
-// not from the low-level system calls used by the runtime.
-//
-// Entersyscall cannot split the stack: the gosave must
-// make g->sched refer to the caller's stack segment, because
-// entersyscall is going to return immediately after.
-//
-// Nothing entersyscall calls can split the stack either.
-// We cannot safely move the stack during an active call to syscall,
-// because we do not know which of the uintptr arguments are
-// really pointers (back into the stack).
-// In practice, this means that we make the fast path run through
-// entersyscall doing no-split things, and the slow path has to use systemstack
-// to run bigger things on the system stack.
-//
-// reentersyscall is the entry point used by cgo callbacks, where explicitly
-// saved SP and PC are restored. This is needed when exitsyscall will be called
-// from a function further up in the call stack than the parent, as g->syscallsp
-// must always point to a valid stack frame. entersyscall below is the normal
-// entry point for syscalls, which obtains the SP and PC from the caller.
-//
-// Syscall tracing:
-// At the start of a syscall we emit traceGoSysCall to capture the stack trace.
-// If the syscall does not block, that is it, we do not emit any other events.
-// If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock;
-// when syscall returns we emit traceGoSysExit and when the goroutine starts running
-// (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart.
-// To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock,
-// we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick),
-// whoever emits traceGoSysBlock increments p.syscalltick afterwards;
-// and we wait for the increment before emitting traceGoSysExit.
-// Note that the increment is done even if tracing is not enabled,
-// because tracing can be enabled in the middle of syscall. We don't want the wait to hang.
-//
-//go:nosplit
-func reentersyscall(pc, sp uintptr) {
- _g_ := getg()
-
- // Disable preemption because during this function g is in Gsyscall status,
- // but can have inconsistent g->sched, do not let GC observe it.
- _g_.m.locks++
-
- // Entersyscall must not call any function that might split/grow the stack.
- // (See details in comment above.)
- // Catch calls that might, by replacing the stack guard with something that
- // will trip any stack check and leaving a flag to tell newstack to die.
- _g_.stackguard0 = stackPreempt
- _g_.throwsplit = true
-
- // Leave SP around for GC and traceback.
- save(pc, sp)
- _g_.syscallsp = sp
- _g_.syscallpc = pc
- casgstatus(_g_, _Grunning, _Gsyscall)
- if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
- systemstack(func() {
- print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
- throw("entersyscall")
- })
- }
-
- if trace.enabled {
- systemstack(traceGoSysCall)
- // systemstack itself clobbers g.sched.{pc,sp} and we might
- // need them later when the G is genuinely blocked in a
- // syscall
- save(pc, sp)
- }
-
- if atomicload(&sched.sysmonwait) != 0 { // TODO: fast atomic
- systemstack(entersyscall_sysmon)
- save(pc, sp)
- }
-
- if _g_.m.p.ptr().runSafePointFn != 0 {
- // runSafePointFn may stack split if run on this stack
- systemstack(runSafePointFn)
- save(pc, sp)
- }
-
- _g_.m.syscalltick = _g_.m.p.ptr().syscalltick
- _g_.sysblocktraced = true
- _g_.m.mcache = nil
- _g_.m.p.ptr().m = 0
- atomicstore(&_g_.m.p.ptr().status, _Psyscall)
- if sched.gcwaiting != 0 {
- systemstack(entersyscall_gcwait)
- save(pc, sp)
- }
-
- // Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched).
- // We set _StackGuard to StackPreempt so that first split stack check calls morestack.
- // Morestack detects this case and throws.
- _g_.stackguard0 = stackPreempt
- _g_.m.locks--
-}
-
-// Standard syscall entry used by the go syscall library and normal cgo calls.
-//go:nosplit
-func entersyscall(dummy int32) {
- reentersyscall(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
-}
-
-func entersyscall_sysmon() {
- lock(&sched.lock)
- if atomicload(&sched.sysmonwait) != 0 {
- atomicstore(&sched.sysmonwait, 0)
- notewakeup(&sched.sysmonnote)
- }
- unlock(&sched.lock)
-}
-
-func entersyscall_gcwait() {
- _g_ := getg()
- _p_ := _g_.m.p.ptr()
-
- lock(&sched.lock)
- if sched.stopwait > 0 && cas(&_p_.status, _Psyscall, _Pgcstop) {
- if trace.enabled {
- traceGoSysBlock(_p_)
- traceProcStop(_p_)
- }
- _p_.syscalltick++
- if sched.stopwait--; sched.stopwait == 0 {
- notewakeup(&sched.stopnote)
- }
- }
- unlock(&sched.lock)
-}
-
-// The same as entersyscall(), but with a hint that the syscall is blocking.
-//go:nosplit
-func entersyscallblock(dummy int32) {
- _g_ := getg()
-
- _g_.m.locks++ // see comment in entersyscall
- _g_.throwsplit = true
- _g_.stackguard0 = stackPreempt // see comment in entersyscall
- _g_.m.syscalltick = _g_.m.p.ptr().syscalltick
- _g_.sysblocktraced = true
- _g_.m.p.ptr().syscalltick++
-
- // Leave SP around for GC and traceback.
- pc := getcallerpc(unsafe.Pointer(&dummy))
- sp := getcallersp(unsafe.Pointer(&dummy))
- save(pc, sp)
- _g_.syscallsp = _g_.sched.sp
- _g_.syscallpc = _g_.sched.pc
- if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
- sp1 := sp
- sp2 := _g_.sched.sp
- sp3 := _g_.syscallsp
- systemstack(func() {
- print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
- throw("entersyscallblock")
- })
- }
- casgstatus(_g_, _Grunning, _Gsyscall)
- if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
- systemstack(func() {
- print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
- throw("entersyscallblock")
- })
- }
-
- systemstack(entersyscallblock_handoff)
-
- // Resave for traceback during blocked call.
- save(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
-
- _g_.m.locks--
-}
-
-func entersyscallblock_handoff() {
- if trace.enabled {
- traceGoSysCall()
- traceGoSysBlock(getg().m.p.ptr())
- }
- handoffp(releasep())
-}
-
-// The goroutine g exited its system call.
-// Arrange for it to run on a cpu again.
-// This is called only from the go syscall library, not
-// from the low-level system calls used by the
-//go:nosplit
-func exitsyscall(dummy int32) {
- _g_ := getg()
-
- _g_.m.locks++ // see comment in entersyscall
- if getcallersp(unsafe.Pointer(&dummy)) > _g_.syscallsp {
- throw("exitsyscall: syscall frame is no longer valid")
- }
-
- _g_.waitsince = 0
- oldp := _g_.m.p.ptr()
- if exitsyscallfast() {
- if _g_.m.mcache == nil {
- throw("lost mcache")
- }
- if trace.enabled {
- if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
- systemstack(traceGoStart)
- }
- }
- // There's a cpu for us, so we can run.
- _g_.m.p.ptr().syscalltick++
- // We need to cas the status and scan before resuming...
- casgstatus(_g_, _Gsyscall, _Grunning)
-
- // Garbage collector isn't running (since we are),
- // so okay to clear syscallsp.
- _g_.syscallsp = 0
- _g_.m.locks--
- if _g_.preempt {
- // restore the preemption request in case we've cleared it in newstack
- _g_.stackguard0 = stackPreempt
- } else {
- // otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock
- _g_.stackguard0 = _g_.stack.lo + _StackGuard
- }
- _g_.throwsplit = false
- return
- }
-
- _g_.sysexitticks = 0
- _g_.sysexitseq = 0
- if trace.enabled {
- // Wait till traceGoSysBlock event is emitted.
- // This ensures consistency of the trace (the goroutine is started after it is blocked).
- for oldp != nil && oldp.syscalltick == _g_.m.syscalltick {
- osyield()
- }
- // We can't trace syscall exit right now because we don't have a P.
- // Tracing code can invoke write barriers that cannot run without a P.
- // So instead we remember the syscall exit time and emit the event
- // in execute when we have a P.
- _g_.sysexitseq, _g_.sysexitticks = tracestamp()
- }
-
- _g_.m.locks--
-
- // Call the scheduler.
- mcall(exitsyscall0)
-
- if _g_.m.mcache == nil {
- throw("lost mcache")
- }
-
- // Scheduler returned, so we're allowed to run now.
- // Delete the syscallsp information that we left for
- // the garbage collector during the system call.
- // Must wait until now because until gosched returns
- // we don't know for sure that the garbage collector
- // is not running.
- _g_.syscallsp = 0
- _g_.m.p.ptr().syscalltick++
- _g_.throwsplit = false
-}
-
-//go:nosplit
-func exitsyscallfast() bool {
- _g_ := getg()
-
- // Freezetheworld sets stopwait but does not retake P's.
- if sched.stopwait == freezeStopWait {
- _g_.m.mcache = nil
- _g_.m.p = 0
- return false
- }
-
- // Try to re-acquire the last P.
- if _g_.m.p != 0 && _g_.m.p.ptr().status == _Psyscall && cas(&_g_.m.p.ptr().status, _Psyscall, _Prunning) {
- // There's a cpu for us, so we can run.
- _g_.m.mcache = _g_.m.p.ptr().mcache
- _g_.m.p.ptr().m.set(_g_.m)
- if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
- if trace.enabled {
- // The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed).
- // traceGoSysBlock for this syscall was already emitted,
- // but here we effectively retake the p from the new syscall running on the same p.
- systemstack(func() {
- // Denote blocking of the new syscall.
- traceGoSysBlock(_g_.m.p.ptr())
- // Denote completion of the current syscall.
- traceGoSysExit(tracestamp())
- })
- }
- _g_.m.p.ptr().syscalltick++
- }
- return true
- }
-
- // Try to get any other idle P.
- oldp := _g_.m.p.ptr()
- _g_.m.mcache = nil
- _g_.m.p = 0
- if sched.pidle != 0 {
- var ok bool
- systemstack(func() {
- ok = exitsyscallfast_pidle()
- if ok && trace.enabled {
- if oldp != nil {
- // Wait till traceGoSysBlock event is emitted.
- // This ensures consistency of the trace (the goroutine is started after it is blocked).
- for oldp.syscalltick == _g_.m.syscalltick {
- osyield()
- }
- }
- traceGoSysExit(tracestamp())
- }
- })
- if ok {
- return true
- }
- }
- return false
-}
-
-func exitsyscallfast_pidle() bool {
- lock(&sched.lock)
- _p_ := pidleget()
- if _p_ != nil && atomicload(&sched.sysmonwait) != 0 {
- atomicstore(&sched.sysmonwait, 0)
- notewakeup(&sched.sysmonnote)
- }
- unlock(&sched.lock)
- if _p_ != nil {
- acquirep(_p_)
- return true
- }
- return false
-}
-
-// exitsyscall slow path on g0.
-// Failed to acquire P, enqueue gp as runnable.
-func exitsyscall0(gp *g) {
- _g_ := getg()
-
- casgstatus(gp, _Gsyscall, _Grunnable)
- dropg()
- lock(&sched.lock)
- _p_ := pidleget()
- if _p_ == nil {
- globrunqput(gp)
- } else if atomicload(&sched.sysmonwait) != 0 {
- atomicstore(&sched.sysmonwait, 0)
- notewakeup(&sched.sysmonnote)
- }
- unlock(&sched.lock)
- if _p_ != nil {
- acquirep(_p_)
- execute(gp, false) // Never returns.
- }
- if _g_.m.lockedg != nil {
- // Wait until another thread schedules gp and so m again.
- stoplockedm()
- execute(gp, false) // Never returns.
- }
- stopm()
- schedule() // Never returns.
-}
-
-func beforefork() {
- gp := getg().m.curg
-
- // Fork can hang if preempted with signals frequently enough (see issue 5517).
- // Ensure that we stay on the same M where we disable profiling.
- gp.m.locks++
- if gp.m.profilehz != 0 {
- resetcpuprofiler(0)
- }
-
- // This function is called before fork in syscall package.
- // Code between fork and exec must not allocate memory nor even try to grow stack.
- // Here we spoil g->_StackGuard to reliably detect any attempts to grow stack.
- // runtime_AfterFork will undo this in parent process, but not in child.
- gp.stackguard0 = stackFork
-}
-
-// Called from syscall package before fork.
-//go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork
-//go:nosplit
-func syscall_runtime_BeforeFork() {
- systemstack(beforefork)
-}
-
-func afterfork() {
- gp := getg().m.curg
-
- // See the comment in beforefork.
- gp.stackguard0 = gp.stack.lo + _StackGuard
-
- hz := sched.profilehz
- if hz != 0 {
- resetcpuprofiler(hz)
- }
- gp.m.locks--
-}
-
-// Called from syscall package after fork in parent.
-//go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork
-//go:nosplit
-func syscall_runtime_AfterFork() {
- systemstack(afterfork)
-}
-
-// Allocate a new g, with a stack big enough for stacksize bytes.
-func malg(stacksize int32) *g {
- newg := new(g)
- if stacksize >= 0 {
- stacksize = round2(_StackSystem + stacksize)
- systemstack(func() {
- newg.stack, newg.stkbar = stackalloc(uint32(stacksize))
- })
- newg.stackguard0 = newg.stack.lo + _StackGuard
- newg.stackguard1 = ^uintptr(0)
- newg.stackAlloc = uintptr(stacksize)
- }
- return newg
-}
-
-// Create a new g running fn with siz bytes of arguments.
-// Put it on the queue of g's waiting to run.
-// The compiler turns a go statement into a call to this.
-// Cannot split the stack because it assumes that the arguments
-// are available sequentially after &fn; they would not be
-// copied if a stack split occurred.
-//go:nosplit
-func newproc(siz int32, fn *funcval) {
- argp := add(unsafe.Pointer(&fn), ptrSize)
- pc := getcallerpc(unsafe.Pointer(&siz))
- systemstack(func() {
- newproc1(fn, (*uint8)(argp), siz, 0, pc)
- })
-}
-
-// Create a new g running fn with narg bytes of arguments starting
-// at argp and returning nret bytes of results. callerpc is the
-// address of the go statement that created this. The new g is put
-// on the queue of g's waiting to run.
-func newproc1(fn *funcval, argp *uint8, narg int32, nret int32, callerpc uintptr) *g {
- _g_ := getg()
-
- if fn == nil {
- _g_.m.throwing = -1 // do not dump full stacks
- throw("go of nil func value")
- }
- _g_.m.locks++ // disable preemption because it can be holding p in a local var
- siz := narg + nret
- siz = (siz + 7) &^ 7
-
- // We could allocate a larger initial stack if necessary.
- // Not worth it: this is almost always an error.
- // 4*sizeof(uintreg): extra space added below
- // sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
- if siz >= _StackMin-4*regSize-regSize {
- throw("newproc: function arguments too large for new goroutine")
- }
-
- _p_ := _g_.m.p.ptr()
- newg := gfget(_p_)
- if newg == nil {
- newg = malg(_StackMin)
- casgstatus(newg, _Gidle, _Gdead)
- allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
- }
- if newg.stack.hi == 0 {
- throw("newproc1: newg missing stack")
- }
-
- if readgstatus(newg) != _Gdead {
- throw("newproc1: new g is not Gdead")
- }
-
- totalSize := 4*regSize + uintptr(siz) + minFrameSize // extra space in case of reads slightly beyond frame
- totalSize += -totalSize & (spAlign - 1) // align to spAlign
- sp := newg.stack.hi - totalSize
- spArg := sp
- if usesLR {
- // caller's LR
- *(*unsafe.Pointer)(unsafe.Pointer(sp)) = nil
- spArg += minFrameSize
- }
- memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg))
-
- memclr(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
- newg.sched.sp = sp
- newg.stktopsp = sp
- newg.sched.pc = funcPC(goexit) + _PCQuantum // +PCQuantum so that previous instruction is in same function
- newg.sched.g = guintptr(unsafe.Pointer(newg))
- gostartcallfn(&newg.sched, fn)
- newg.gopc = callerpc
- newg.startpc = fn.fn
- casgstatus(newg, _Gdead, _Grunnable)
-
- if _p_.goidcache == _p_.goidcacheend {
- // Sched.goidgen is the last allocated id,
- // this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
- // At startup sched.goidgen=0, so main goroutine receives goid=1.
- _p_.goidcache = xadd64(&sched.goidgen, _GoidCacheBatch)
- _p_.goidcache -= _GoidCacheBatch - 1
- _p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
- }
- newg.goid = int64(_p_.goidcache)
- _p_.goidcache++
- if raceenabled {
- newg.racectx = racegostart(callerpc)
- }
- if trace.enabled {
- traceGoCreate(newg, newg.startpc)
- }
- runqput(_p_, newg, true)
-
- if atomicload(&sched.npidle) != 0 && atomicload(&sched.nmspinning) == 0 && unsafe.Pointer(fn.fn) != unsafe.Pointer(funcPC(main)) { // TODO: fast atomic
- wakep()
- }
- _g_.m.locks--
- if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
- _g_.stackguard0 = stackPreempt
- }
- return newg
-}
-
-// Put on gfree list.
-// If local list is too long, transfer a batch to the global list.
-func gfput(_p_ *p, gp *g) {
- if readgstatus(gp) != _Gdead {
- throw("gfput: bad status (not Gdead)")
- }
-
- stksize := gp.stackAlloc
-
- if stksize != _FixedStack {
- // non-standard stack size - free it.
- stackfree(gp.stack, gp.stackAlloc)
- gp.stack.lo = 0
- gp.stack.hi = 0
- gp.stackguard0 = 0
- gp.stkbar = nil
- gp.stkbarPos = 0
- } else {
- // Reset stack barriers.
- gp.stkbar = gp.stkbar[:0]
- gp.stkbarPos = 0
- }
-
- gp.schedlink.set(_p_.gfree)
- _p_.gfree = gp
- _p_.gfreecnt++
- if _p_.gfreecnt >= 64 {
- lock(&sched.gflock)
- for _p_.gfreecnt >= 32 {
- _p_.gfreecnt--
- gp = _p_.gfree
- _p_.gfree = gp.schedlink.ptr()
- gp.schedlink.set(sched.gfree)
- sched.gfree = gp
- sched.ngfree++
- }
- unlock(&sched.gflock)
- }
-}
-
-// Get from gfree list.
-// If local list is empty, grab a batch from global list.
-func gfget(_p_ *p) *g {
-retry:
- gp := _p_.gfree
- if gp == nil && sched.gfree != nil {
- lock(&sched.gflock)
- for _p_.gfreecnt < 32 && sched.gfree != nil {
- _p_.gfreecnt++
- gp = sched.gfree
- sched.gfree = gp.schedlink.ptr()
- sched.ngfree--
- gp.schedlink.set(_p_.gfree)
- _p_.gfree = gp
- }
- unlock(&sched.gflock)
- goto retry
- }
- if gp != nil {
- _p_.gfree = gp.schedlink.ptr()
- _p_.gfreecnt--
- if gp.stack.lo == 0 {
- // Stack was deallocated in gfput. Allocate a new one.
- systemstack(func() {
- gp.stack, gp.stkbar = stackalloc(_FixedStack)
- })
- gp.stackguard0 = gp.stack.lo + _StackGuard
- gp.stackAlloc = _FixedStack
- } else {
- if raceenabled {
- racemalloc(unsafe.Pointer(gp.stack.lo), gp.stackAlloc)
- }
- }
- }
- return gp
-}
-
-// Purge all cached G's from gfree list to the global list.
-func gfpurge(_p_ *p) {
- lock(&sched.gflock)
- for _p_.gfreecnt != 0 {
- _p_.gfreecnt--
- gp := _p_.gfree
- _p_.gfree = gp.schedlink.ptr()
- gp.schedlink.set(sched.gfree)
- sched.gfree = gp
- sched.ngfree++
- }
- unlock(&sched.gflock)
-}
-
-// Breakpoint executes a breakpoint trap.
-func Breakpoint() {
- breakpoint()
-}
-
-// dolockOSThread is called by LockOSThread and lockOSThread below
-// after they modify m.locked. Do not allow preemption during this call,
-// or else the m might be different in this function than in the caller.
-//go:nosplit
-func dolockOSThread() {
- _g_ := getg()
- _g_.m.lockedg = _g_
- _g_.lockedm = _g_.m
-}
-
-//go:nosplit
-
-// LockOSThread wires the calling goroutine to its current operating system thread.
-// Until the calling goroutine exits or calls UnlockOSThread, it will always
-// execute in that thread, and no other goroutine can.
-func LockOSThread() {
- getg().m.locked |= _LockExternal
- dolockOSThread()
-}
-
-//go:nosplit
-func lockOSThread() {
- getg().m.locked += _LockInternal
- dolockOSThread()
-}
-
-// dounlockOSThread is called by UnlockOSThread and unlockOSThread below
-// after they update m->locked. Do not allow preemption during this call,
-// or else the m might be in different in this function than in the caller.
-//go:nosplit
-func dounlockOSThread() {
- _g_ := getg()
- if _g_.m.locked != 0 {
- return
- }
- _g_.m.lockedg = nil
- _g_.lockedm = nil
-}
-
-//go:nosplit
-
-// UnlockOSThread unwires the calling goroutine from its fixed operating system thread.
-// If the calling goroutine has not called LockOSThread, UnlockOSThread is a no-op.
-func UnlockOSThread() {
- getg().m.locked &^= _LockExternal
- dounlockOSThread()
-}
-
-//go:nosplit
-func unlockOSThread() {
- _g_ := getg()
- if _g_.m.locked < _LockInternal {
- systemstack(badunlockosthread)
- }
- _g_.m.locked -= _LockInternal
- dounlockOSThread()
-}
-
-func badunlockosthread() {
- throw("runtime: internal error: misuse of lockOSThread/unlockOSThread")
-}
-
-func gcount() int32 {
- n := int32(allglen) - sched.ngfree
- for i := 0; ; i++ {
- _p_ := allp[i]
- if _p_ == nil {
- break
- }
- n -= _p_.gfreecnt
- }
-
- // All these variables can be changed concurrently, so the result can be inconsistent.
- // But at least the current goroutine is running.
- if n < 1 {
- n = 1
- }
- return n
-}
-
-func mcount() int32 {
- return sched.mcount
-}
-
-var prof struct {
- lock uint32
- hz int32
-}
-
-func _System() { _System() }
-func _ExternalCode() { _ExternalCode() }
-func _GC() { _GC() }
-
-// Called if we receive a SIGPROF signal.
-func sigprof(pc, sp, lr uintptr, gp *g, mp *m) {
- if prof.hz == 0 {
- return
- }
-
- // Profiling runs concurrently with GC, so it must not allocate.
- mp.mallocing++
-
- // Coordinate with stack barrier insertion in scanstack.
- for !cas(&gp.stackLock, 0, 1) {
- osyield()
- }
-
- // Define that a "user g" is a user-created goroutine, and a "system g"
- // is one that is m->g0 or m->gsignal.
- //
- // We might be interrupted for profiling halfway through a
- // goroutine switch. The switch involves updating three (or four) values:
- // g, PC, SP, and (on arm) LR. The PC must be the last to be updated,
- // because once it gets updated the new g is running.
- //
- // When switching from a user g to a system g, LR is not considered live,
- // so the update only affects g, SP, and PC. Since PC must be last, there
- // the possible partial transitions in ordinary execution are (1) g alone is updated,
- // (2) both g and SP are updated, and (3) SP alone is updated.
- // If SP or g alone is updated, we can detect the partial transition by checking
- // whether the SP is within g's stack bounds. (We could also require that SP
- // be changed only after g, but the stack bounds check is needed by other
- // cases, so there is no need to impose an additional requirement.)
- //
- // There is one exceptional transition to a system g, not in ordinary execution.
- // When a signal arrives, the operating system starts the signal handler running
- // with an updated PC and SP. The g is updated last, at the beginning of the
- // handler. There are two reasons this is okay. First, until g is updated the
- // g and SP do not match, so the stack bounds check detects the partial transition.
- // Second, signal handlers currently run with signals disabled, so a profiling
- // signal cannot arrive during the handler.
- //
- // When switching from a system g to a user g, there are three possibilities.
- //
- // First, it may be that the g switch has no PC update, because the SP
- // either corresponds to a user g throughout (as in asmcgocall)
- // or because it has been arranged to look like a user g frame
- // (as in cgocallback_gofunc). In this case, since the entire
- // transition is a g+SP update, a partial transition updating just one of
- // those will be detected by the stack bounds check.
- //
- // Second, when returning from a signal handler, the PC and SP updates
- // are performed by the operating system in an atomic update, so the g
- // update must be done before them. The stack bounds check detects
- // the partial transition here, and (again) signal handlers run with signals
- // disabled, so a profiling signal cannot arrive then anyway.
- //
- // Third, the common case: it may be that the switch updates g, SP, and PC
- // separately. If the PC is within any of the functions that does this,
- // we don't ask for a traceback. C.F. the function setsSP for more about this.
- //
- // There is another apparently viable approach, recorded here in case
- // the "PC within setsSP function" check turns out not to be usable.
- // It would be possible to delay the update of either g or SP until immediately
- // before the PC update instruction. Then, because of the stack bounds check,
- // the only problematic interrupt point is just before that PC update instruction,
- // and the sigprof handler can detect that instruction and simulate stepping past
- // it in order to reach a consistent state. On ARM, the update of g must be made
- // in two places (in R10 and also in a TLS slot), so the delayed update would
- // need to be the SP update. The sigprof handler must read the instruction at
- // the current PC and if it was the known instruction (for example, JMP BX or
- // MOV R2, PC), use that other register in place of the PC value.
- // The biggest drawback to this solution is that it requires that we can tell
- // whether it's safe to read from the memory pointed at by PC.
- // In a correct program, we can test PC == nil and otherwise read,
- // but if a profiling signal happens at the instant that a program executes
- // a bad jump (before the program manages to handle the resulting fault)
- // the profiling handler could fault trying to read nonexistent memory.
- //
- // To recap, there are no constraints on the assembly being used for the
- // transition. We simply require that g and SP match and that the PC is not
- // in gogo.
- traceback := true
- if gp == nil || sp < gp.stack.lo || gp.stack.hi < sp || setsSP(pc) {
- traceback = false
- }
- var stk [maxCPUProfStack]uintptr
- n := 0
- if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 {
- // Cgo, we can't unwind and symbolize arbitrary C code,
- // so instead collect Go stack that leads to the cgo call.
- // This is especially important on windows, since all syscalls are cgo calls.
- n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[0], len(stk), nil, nil, 0)
- } else if traceback {
- n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, _TraceTrap|_TraceJumpStack)
- }
- if !traceback || n <= 0 {
- // Normal traceback is impossible or has failed.
- // See if it falls into several common cases.
- n = 0
- if GOOS == "windows" && n == 0 && mp.libcallg != 0 && mp.libcallpc != 0 && mp.libcallsp != 0 {
- // Libcall, i.e. runtime syscall on windows.
- // Collect Go stack that leads to the call.
- n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg.ptr(), 0, &stk[0], len(stk), nil, nil, 0)
- }
- if n == 0 {
- // If all of the above has failed, account it against abstract "System" or "GC".
- n = 2
- // "ExternalCode" is better than "etext".
- if pc > firstmoduledata.etext {
- pc = funcPC(_ExternalCode) + _PCQuantum
- }
- stk[0] = pc
- if mp.preemptoff != "" || mp.helpgc != 0 {
- stk[1] = funcPC(_GC) + _PCQuantum
- } else {
- stk[1] = funcPC(_System) + _PCQuantum
- }
- }
- }
- atomicstore(&gp.stackLock, 0)
-
- if prof.hz != 0 {
- // Simple cas-lock to coordinate with setcpuprofilerate.
- for !cas(&prof.lock, 0, 1) {
- osyield()
- }
- if prof.hz != 0 {
- cpuprof.add(stk[:n])
- }
- atomicstore(&prof.lock, 0)
- }
- mp.mallocing--
-}
-
-// Reports whether a function will set the SP
-// to an absolute value. Important that
-// we don't traceback when these are at the bottom
-// of the stack since we can't be sure that we will
-// find the caller.
-//
-// If the function is not on the bottom of the stack
-// we assume that it will have set it up so that traceback will be consistent,
-// either by being a traceback terminating function
-// or putting one on the stack at the right offset.
-func setsSP(pc uintptr) bool {
- f := findfunc(pc)
- if f == nil {
- // couldn't find the function for this PC,
- // so assume the worst and stop traceback
- return true
- }
- switch f.entry {
- case gogoPC, systemstackPC, mcallPC, morestackPC:
- return true
- }
- return false
-}
-
-// Arrange to call fn with a traceback hz times a second.
-func setcpuprofilerate_m(hz int32) {
- // Force sane arguments.
- if hz < 0 {
- hz = 0
- }
-
- // Disable preemption, otherwise we can be rescheduled to another thread
- // that has profiling enabled.
- _g_ := getg()
- _g_.m.locks++
-
- // Stop profiler on this thread so that it is safe to lock prof.
- // if a profiling signal came in while we had prof locked,
- // it would deadlock.
- resetcpuprofiler(0)
-
- for !cas(&prof.lock, 0, 1) {
- osyield()
- }
- prof.hz = hz
- atomicstore(&prof.lock, 0)
-
- lock(&sched.lock)
- sched.profilehz = hz
- unlock(&sched.lock)
-
- if hz != 0 {
- resetcpuprofiler(hz)
- }
-
- _g_.m.locks--
-}
-
-// Change number of processors. The world is stopped, sched is locked.
-// gcworkbufs are not being modified by either the GC or
-// the write barrier code.
-// Returns list of Ps with local work, they need to be scheduled by the caller.
-func procresize(nprocs int32) *p {
- old := gomaxprocs
- if old < 0 || old > _MaxGomaxprocs || nprocs <= 0 || nprocs > _MaxGomaxprocs {
- throw("procresize: invalid arg")
- }
- if trace.enabled {
- traceGomaxprocs(nprocs)
- }
-
- // update statistics
- now := nanotime()
- if sched.procresizetime != 0 {
- sched.totaltime += int64(old) * (now - sched.procresizetime)
- }
- sched.procresizetime = now
-
- // initialize new P's
- for i := int32(0); i < nprocs; i++ {
- pp := allp[i]
- if pp == nil {
- pp = new(p)
- pp.id = i
- pp.status = _Pgcstop
- pp.sudogcache = pp.sudogbuf[:0]
- for i := range pp.deferpool {
- pp.deferpool[i] = pp.deferpoolbuf[i][:0]
- }
- atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
- }
- if pp.mcache == nil {
- if old == 0 && i == 0 {
- if getg().m.mcache == nil {
- throw("missing mcache?")
- }
- pp.mcache = getg().m.mcache // bootstrap
- } else {
- pp.mcache = allocmcache()
- }
- }
- }
-
- // free unused P's
- for i := nprocs; i < old; i++ {
- p := allp[i]
- if trace.enabled {
- if p == getg().m.p.ptr() {
- // moving to p[0], pretend that we were descheduled
- // and then scheduled again to keep the trace sane.
- traceGoSched()
- traceProcStop(p)
- }
- }
- // move all runnable goroutines to the global queue
- for p.runqhead != p.runqtail {
- // pop from tail of local queue
- p.runqtail--
- gp := p.runq[p.runqtail%uint32(len(p.runq))]
- // push onto head of global queue
- globrunqputhead(gp)
- }
- if p.runnext != 0 {
- globrunqputhead(p.runnext.ptr())
- p.runnext = 0
- }
- // if there's a background worker, make it runnable and put
- // it on the global queue so it can clean itself up
- if p.gcBgMarkWorker != nil {
- casgstatus(p.gcBgMarkWorker, _Gwaiting, _Grunnable)
- if trace.enabled {
- traceGoUnpark(p.gcBgMarkWorker, 0)
- }
- globrunqput(p.gcBgMarkWorker)
- p.gcBgMarkWorker = nil
- }
- for i := range p.sudogbuf {
- p.sudogbuf[i] = nil
- }
- p.sudogcache = p.sudogbuf[:0]
- for i := range p.deferpool {
- for j := range p.deferpoolbuf[i] {
- p.deferpoolbuf[i][j] = nil
- }
- p.deferpool[i] = p.deferpoolbuf[i][:0]
- }
- freemcache(p.mcache)
- p.mcache = nil
- gfpurge(p)
- traceProcFree(p)
- p.status = _Pdead
- // can't free P itself because it can be referenced by an M in syscall
- }
-
- _g_ := getg()
- if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs {
- // continue to use the current P
- _g_.m.p.ptr().status = _Prunning
- } else {
- // release the current P and acquire allp[0]
- if _g_.m.p != 0 {
- _g_.m.p.ptr().m = 0
- }
- _g_.m.p = 0
- _g_.m.mcache = nil
- p := allp[0]
- p.m = 0
- p.status = _Pidle
- acquirep(p)
- if trace.enabled {
- traceGoStart()
- }
- }
- var runnablePs *p
- for i := nprocs - 1; i >= 0; i-- {
- p := allp[i]
- if _g_.m.p.ptr() == p {
- continue
- }
- p.status = _Pidle
- if runqempty(p) {
- pidleput(p)
- } else {
- p.m.set(mget())
- p.link.set(runnablePs)
- runnablePs = p
- }
- }
- var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
- atomicstore((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
- return runnablePs
-}
-
-// Associate p and the current m.
-func acquirep(_p_ *p) {
- acquirep1(_p_)
-
- // have p; write barriers now allowed
- _g_ := getg()
- _g_.m.mcache = _p_.mcache
-
- if trace.enabled {
- traceProcStart()
- }
-}
-
-// May run during STW, so write barriers are not allowed.
-//go:nowritebarrier
-func acquirep1(_p_ *p) {
- _g_ := getg()
-
- if _g_.m.p != 0 || _g_.m.mcache != nil {
- throw("acquirep: already in go")
- }
- if _p_.m != 0 || _p_.status != _Pidle {
- id := int32(0)
- if _p_.m != 0 {
- id = _p_.m.ptr().id
- }
- print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n")
- throw("acquirep: invalid p state")
- }
- _g_.m.p.set(_p_)
- _p_.m.set(_g_.m)
- _p_.status = _Prunning
-}
-
-// Disassociate p and the current m.
-func releasep() *p {
- _g_ := getg()
-
- if _g_.m.p == 0 || _g_.m.mcache == nil {
- throw("releasep: invalid arg")
- }
- _p_ := _g_.m.p.ptr()
- if _p_.m.ptr() != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning {
- print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n")
- throw("releasep: invalid p state")
- }
- if trace.enabled {
- traceProcStop(_g_.m.p.ptr())
- }
- _g_.m.p = 0
- _g_.m.mcache = nil
- _p_.m = 0
- _p_.status = _Pidle
- return _p_
-}
-
-func incidlelocked(v int32) {
- lock(&sched.lock)
- sched.nmidlelocked += v
- if v > 0 {
- checkdead()
- }
- unlock(&sched.lock)
-}
-
-// Check for deadlock situation.
-// The check is based on number of running M's, if 0 -> deadlock.
-func checkdead() {
- // For -buildmode=c-shared or -buildmode=c-archive it's OK if
- // there are no running goroutines. The calling program is
- // assumed to be running.
- if islibrary || isarchive {
- return
- }
-
- // If we are dying because of a signal caught on an already idle thread,
- // freezetheworld will cause all running threads to block.
- // And runtime will essentially enter into deadlock state,
- // except that there is a thread that will call exit soon.
- if panicking > 0 {
- return
- }
-
- // -1 for sysmon
- run := sched.mcount - sched.nmidle - sched.nmidlelocked - 1
- if run > 0 {
- return
- }
- if run < 0 {
- print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", sched.mcount, "\n")
- throw("checkdead: inconsistent counts")
- }
-
- grunning := 0
- lock(&allglock)
- for i := 0; i < len(allgs); i++ {
- gp := allgs[i]
- if isSystemGoroutine(gp) {
- continue
- }
- s := readgstatus(gp)
- switch s &^ _Gscan {
- case _Gwaiting:
- grunning++
- case _Grunnable,
- _Grunning,
- _Gsyscall:
- unlock(&allglock)
- print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n")
- throw("checkdead: runnable g")
- }
- }
- unlock(&allglock)
- if grunning == 0 { // possible if main goroutine calls runtimeĀ·Goexit()
- throw("no goroutines (main called runtime.Goexit) - deadlock!")
- }
-
- // Maybe jump time forward for playground.
- gp := timejump()
- if gp != nil {
- casgstatus(gp, _Gwaiting, _Grunnable)
- globrunqput(gp)
- _p_ := pidleget()
- if _p_ == nil {
- throw("checkdead: no p for timer")
- }
- mp := mget()
- if mp == nil {
- newm(nil, _p_)
- } else {
- mp.nextp.set(_p_)
- notewakeup(&mp.park)
- }
- return
- }
-
- getg().m.throwing = -1 // do not dump full stacks
- throw("all goroutines are asleep - deadlock!")
-}
-
-// forcegcperiod is the maximum time in nanoseconds between garbage
-// collections. If we go this long without a garbage collection, one
-// is forced to run.
-//
-// This is a variable for testing purposes. It normally doesn't change.
-var forcegcperiod int64 = 2 * 60 * 1e9
-
-func sysmon() {
- // If a heap span goes unused for 5 minutes after a garbage collection,
- // we hand it back to the operating system.
- scavengelimit := int64(5 * 60 * 1e9)
-
- if debug.scavenge > 0 {
- // Scavenge-a-lot for testing.
- forcegcperiod = 10 * 1e6
- scavengelimit = 20 * 1e6
- }
-
- lastscavenge := nanotime()
- nscavenge := 0
-
- lasttrace := int64(0)
- idle := 0 // how many cycles in succession we had not wokeup somebody
- delay := uint32(0)
- for {
- if idle == 0 { // start with 20us sleep...
- delay = 20
- } else if idle > 50 { // start doubling the sleep after 1ms...
- delay *= 2
- }
- if delay > 10*1000 { // up to 10ms
- delay = 10 * 1000
- }
- usleep(delay)
- if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs)) { // TODO: fast atomic
- lock(&sched.lock)
- if atomicload(&sched.gcwaiting) != 0 || atomicload(&sched.npidle) == uint32(gomaxprocs) {
- atomicstore(&sched.sysmonwait, 1)
- unlock(&sched.lock)
- // Make wake-up period small enough
- // for the sampling to be correct.
- maxsleep := forcegcperiod / 2
- if scavengelimit < forcegcperiod {
- maxsleep = scavengelimit / 2
- }
- notetsleep(&sched.sysmonnote, maxsleep)
- lock(&sched.lock)
- atomicstore(&sched.sysmonwait, 0)
- noteclear(&sched.sysmonnote)
- idle = 0
- delay = 20
- }
- unlock(&sched.lock)
- }
- // poll network if not polled for more than 10ms
- lastpoll := int64(atomicload64(&sched.lastpoll))
- now := nanotime()
- unixnow := unixnanotime()
- if lastpoll != 0 && lastpoll+10*1000*1000 < now {
- cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
- gp := netpoll(false) // non-blocking - returns list of goroutines
- if gp != nil {
- // Need to decrement number of idle locked M's
- // (pretending that one more is running) before injectglist.
- // Otherwise it can lead to the following situation:
- // injectglist grabs all P's but before it starts M's to run the P's,
- // another M returns from syscall, finishes running its G,
- // observes that there is no work to do and no other running M's
- // and reports deadlock.
- incidlelocked(-1)
- injectglist(gp)
- incidlelocked(1)
- }
- }
- // retake P's blocked in syscalls
- // and preempt long running G's
- if retake(now) != 0 {
- idle = 0
- } else {
- idle++
- }
- // check if we need to force a GC
- lastgc := int64(atomicload64(&memstats.last_gc))
- if lastgc != 0 && unixnow-lastgc > forcegcperiod && atomicload(&forcegc.idle) != 0 && atomicloaduint(&bggc.working) == 0 {
- lock(&forcegc.lock)
- forcegc.idle = 0
- forcegc.g.schedlink = 0
- injectglist(forcegc.g)
- unlock(&forcegc.lock)
- }
- // scavenge heap once in a while
- if lastscavenge+scavengelimit/2 < now {
- mHeap_Scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit))
- lastscavenge = now
- nscavenge++
- }
- if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace*1000000) <= now {
- lasttrace = now
- schedtrace(debug.scheddetail > 0)
- }
- }
-}
-
-var pdesc [_MaxGomaxprocs]struct {
- schedtick uint32
- schedwhen int64
- syscalltick uint32
- syscallwhen int64
-}
-
-// forcePreemptNS is the time slice given to a G before it is
-// preempted.
-const forcePreemptNS = 10 * 1000 * 1000 // 10ms
-
-func retake(now int64) uint32 {
- n := 0
- for i := int32(0); i < gomaxprocs; i++ {
- _p_ := allp[i]
- if _p_ == nil {
- continue
- }
- pd := &pdesc[i]
- s := _p_.status
- if s == _Psyscall {
- // Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
- t := int64(_p_.syscalltick)
- if int64(pd.syscalltick) != t {
- pd.syscalltick = uint32(t)
- pd.syscallwhen = now
- continue
- }
- // On the one hand we don't want to retake Ps if there is no other work to do,
- // but on the other hand we want to retake them eventually
- // because they can prevent the sysmon thread from deep sleep.
- if runqempty(_p_) && atomicload(&sched.nmspinning)+atomicload(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
- continue
- }
- // Need to decrement number of idle locked M's
- // (pretending that one more is running) before the CAS.
- // Otherwise the M from which we retake can exit the syscall,
- // increment nmidle and report deadlock.
- incidlelocked(-1)
- if cas(&_p_.status, s, _Pidle) {
- if trace.enabled {
- traceGoSysBlock(_p_)
- traceProcStop(_p_)
- }
- n++
- _p_.syscalltick++
- handoffp(_p_)
- }
- incidlelocked(1)
- } else if s == _Prunning {
- // Preempt G if it's running for too long.
- t := int64(_p_.schedtick)
- if int64(pd.schedtick) != t {
- pd.schedtick = uint32(t)
- pd.schedwhen = now
- continue
- }
- if pd.schedwhen+forcePreemptNS > now {
- continue
- }
- preemptone(_p_)
- }
- }
- return uint32(n)
-}
-
-// Tell all goroutines that they have been preempted and they should stop.
-// This function is purely best-effort. It can fail to inform a goroutine if a
-// processor just started running it.
-// No locks need to be held.
-// Returns true if preemption request was issued to at least one goroutine.
-func preemptall() bool {
- res := false
- for i := int32(0); i < gomaxprocs; i++ {
- _p_ := allp[i]
- if _p_ == nil || _p_.status != _Prunning {
- continue
- }
- if preemptone(_p_) {
- res = true
- }
- }
- return res
-}
-
-// Tell the goroutine running on processor P to stop.
-// This function is purely best-effort. It can incorrectly fail to inform the
-// goroutine. It can send inform the wrong goroutine. Even if it informs the
-// correct goroutine, that goroutine might ignore the request if it is
-// simultaneously executing newstack.
-// No lock needs to be held.
-// Returns true if preemption request was issued.
-// The actual preemption will happen at some point in the future
-// and will be indicated by the gp->status no longer being
-// Grunning
-func preemptone(_p_ *p) bool {
- mp := _p_.m.ptr()
- if mp == nil || mp == getg().m {
- return false
- }
- gp := mp.curg
- if gp == nil || gp == mp.g0 {
- return false
- }
-
- gp.preempt = true
-
- // Every call in a go routine checks for stack overflow by
- // comparing the current stack pointer to gp->stackguard0.
- // Setting gp->stackguard0 to StackPreempt folds
- // preemption into the normal stack overflow check.
- gp.stackguard0 = stackPreempt
- return true
-}
-
-var starttime int64
-
-func schedtrace(detailed bool) {
- now := nanotime()
- if starttime == 0 {
- starttime = now
- }
-
- lock(&sched.lock)
- print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", sched.mcount, " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
- if detailed {
- print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
- }
- // We must be careful while reading data from P's, M's and G's.
- // Even if we hold schedlock, most data can be changed concurrently.
- // E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
- for i := int32(0); i < gomaxprocs; i++ {
- _p_ := allp[i]
- if _p_ == nil {
- continue
- }
- mp := _p_.m.ptr()
- h := atomicload(&_p_.runqhead)
- t := atomicload(&_p_.runqtail)
- if detailed {
- id := int32(-1)
- if mp != nil {
- id = mp.id
- }
- print(" P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n")
- } else {
- // In non-detailed mode format lengths of per-P run queues as:
- // [len1 len2 len3 len4]
- print(" ")
- if i == 0 {
- print("[")
- }
- print(t - h)
- if i == gomaxprocs-1 {
- print("]\n")
- }
- }
- }
-
- if !detailed {
- unlock(&sched.lock)
- return
- }
-
- for mp := allm; mp != nil; mp = mp.alllink {
- _p_ := mp.p.ptr()
- gp := mp.curg
- lockedg := mp.lockedg
- id1 := int32(-1)
- if _p_ != nil {
- id1 = _p_.id
- }
- id2 := int64(-1)
- if gp != nil {
- id2 = gp.goid
- }
- id3 := int64(-1)
- if lockedg != nil {
- id3 = lockedg.goid
- }
- print(" M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", getg().m.blocked, " lockedg=", id3, "\n")
- }
-
- lock(&allglock)
- for gi := 0; gi < len(allgs); gi++ {
- gp := allgs[gi]
- mp := gp.m
- lockedm := gp.lockedm
- id1 := int32(-1)
- if mp != nil {
- id1 = mp.id
- }
- id2 := int32(-1)
- if lockedm != nil {
- id2 = lockedm.id
- }
- print(" G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n")
- }
- unlock(&allglock)
- unlock(&sched.lock)
-}
-
-// Put mp on midle list.
-// Sched must be locked.
-// May run during STW, so write barriers are not allowed.
-//go:nowritebarrier
-func mput(mp *m) {
- mp.schedlink = sched.midle
- sched.midle.set(mp)
- sched.nmidle++
- checkdead()
-}
-
-// Try to get an m from midle list.
-// Sched must be locked.
-// May run during STW, so write barriers are not allowed.
-//go:nowritebarrier
-func mget() *m {
- mp := sched.midle.ptr()
- if mp != nil {
- sched.midle = mp.schedlink
- sched.nmidle--
- }
- return mp
-}
-
-// Put gp on the global runnable queue.
-// Sched must be locked.
-// May run during STW, so write barriers are not allowed.
-//go:nowritebarrier
-func globrunqput(gp *g) {
- gp.schedlink = 0
- if sched.runqtail != 0 {
- sched.runqtail.ptr().schedlink.set(gp)
- } else {
- sched.runqhead.set(gp)
- }
- sched.runqtail.set(gp)
- sched.runqsize++
-}
-
-// Put gp at the head of the global runnable queue.
-// Sched must be locked.
-// May run during STW, so write barriers are not allowed.
-//go:nowritebarrier
-func globrunqputhead(gp *g) {
- gp.schedlink = sched.runqhead
- sched.runqhead.set(gp)
- if sched.runqtail == 0 {
- sched.runqtail.set(gp)
- }
- sched.runqsize++
-}
-
-// Put a batch of runnable goroutines on the global runnable queue.
-// Sched must be locked.
-func globrunqputbatch(ghead *g, gtail *g, n int32) {
- gtail.schedlink = 0
- if sched.runqtail != 0 {
- sched.runqtail.ptr().schedlink.set(ghead)
- } else {
- sched.runqhead.set(ghead)
- }
- sched.runqtail.set(gtail)
- sched.runqsize += n
-}
-
-// Try get a batch of G's from the global runnable queue.
-// Sched must be locked.
-func globrunqget(_p_ *p, max int32) *g {
- if sched.runqsize == 0 {
- return nil
- }
-
- n := sched.runqsize/gomaxprocs + 1
- if n > sched.runqsize {
- n = sched.runqsize
- }
- if max > 0 && n > max {
- n = max
- }
- if n > int32(len(_p_.runq))/2 {
- n = int32(len(_p_.runq)) / 2
- }
-
- sched.runqsize -= n
- if sched.runqsize == 0 {
- sched.runqtail = 0
- }
-
- gp := sched.runqhead.ptr()
- sched.runqhead = gp.schedlink
- n--
- for ; n > 0; n-- {
- gp1 := sched.runqhead.ptr()
- sched.runqhead = gp1.schedlink
- runqput(_p_, gp1, false)
- }
- return gp
-}
-
-// Put p to on _Pidle list.
-// Sched must be locked.
-// May run during STW, so write barriers are not allowed.
-//go:nowritebarrier
-func pidleput(_p_ *p) {
- if !runqempty(_p_) {
- throw("pidleput: P has non-empty run queue")
- }
- _p_.link = sched.pidle
- sched.pidle.set(_p_)
- xadd(&sched.npidle, 1) // TODO: fast atomic
-}
-
-// Try get a p from _Pidle list.
-// Sched must be locked.
-// May run during STW, so write barriers are not allowed.
-//go:nowritebarrier
-func pidleget() *p {
- _p_ := sched.pidle.ptr()
- if _p_ != nil {
- sched.pidle = _p_.link
- xadd(&sched.npidle, -1) // TODO: fast atomic
- }
- return _p_
-}
-
-// runqempty returns true if _p_ has no Gs on its local run queue.
-// Note that this test is generally racy.
-func runqempty(_p_ *p) bool {
- return _p_.runqhead == _p_.runqtail && _p_.runnext == 0
-}
-
-// To shake out latent assumptions about scheduling order,
-// we introduce some randomness into scheduling decisions
-// when running with the race detector.
-// The need for this was made obvious by changing the
-// (deterministic) scheduling order in Go 1.5 and breaking
-// many poorly-written tests.
-// With the randomness here, as long as the tests pass
-// consistently with -race, they shouldn't have latent scheduling
-// assumptions.
-const randomizeScheduler = raceenabled
-
-// runqput tries to put g on the local runnable queue.
-// If next if false, runqput adds g to the tail of the runnable queue.
-// If next is true, runqput puts g in the _p_.runnext slot.
-// If the run queue is full, runnext puts g on the global queue.
-// Executed only by the owner P.
-func runqput(_p_ *p, gp *g, next bool) {
- if randomizeScheduler && next && fastrand1()%2 == 0 {
- next = false
- }
-
- if next {
- retryNext:
- oldnext := _p_.runnext
- if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
- goto retryNext
- }
- if oldnext == 0 {
- return
- }
- // Kick the old runnext out to the regular run queue.
- gp = oldnext.ptr()
- }
-
-retry:
- h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers
- t := _p_.runqtail
- if t-h < uint32(len(_p_.runq)) {
- _p_.runq[t%uint32(len(_p_.runq))] = gp
- atomicstore(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
- return
- }
- if runqputslow(_p_, gp, h, t) {
- return
- }
- // the queue is not full, now the put above must suceed
- goto retry
-}
-
-// Put g and a batch of work from local runnable queue on global queue.
-// Executed only by the owner P.
-func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
- var batch [len(_p_.runq)/2 + 1]*g
-
- // First, grab a batch from local queue.
- n := t - h
- n = n / 2
- if n != uint32(len(_p_.runq)/2) {
- throw("runqputslow: queue is not full")
- }
- for i := uint32(0); i < n; i++ {
- batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))]
- }
- if !cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
- return false
- }
- batch[n] = gp
-
- if randomizeScheduler {
- for i := uint32(1); i <= n; i++ {
- j := fastrand1() % (i + 1)
- batch[i], batch[j] = batch[j], batch[i]
- }
- }
-
- // Link the goroutines.
- for i := uint32(0); i < n; i++ {
- batch[i].schedlink.set(batch[i+1])
- }
-
- // Now put the batch on global queue.
- lock(&sched.lock)
- globrunqputbatch(batch[0], batch[n], int32(n+1))
- unlock(&sched.lock)
- return true
-}
-
-// Get g from local runnable queue.
-// If inheritTime is true, gp should inherit the remaining time in the
-// current time slice. Otherwise, it should start a new time slice.
-// Executed only by the owner P.
-func runqget(_p_ *p) (gp *g, inheritTime bool) {
- // If there's a runnext, it's the next G to run.
- for {
- next := _p_.runnext
- if next == 0 {
- break
- }
- if _p_.runnext.cas(next, 0) {
- return next.ptr(), true
- }
- }
-
- for {
- h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers
- t := _p_.runqtail
- if t == h {
- return nil, false
- }
- gp := _p_.runq[h%uint32(len(_p_.runq))]
- if cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume
- return gp, false
- }
- }
-}
-
-// Grabs a batch of goroutines from _p_'s runnable queue into batch.
-// Batch is a ring buffer starting at batchHead.
-// Returns number of grabbed goroutines.
-// Can be executed by any P.
-func runqgrab(_p_ *p, batch *[256]*g, batchHead uint32, stealRunNextG bool) uint32 {
- for {
- h := atomicload(&_p_.runqhead) // load-acquire, synchronize with other consumers
- t := atomicload(&_p_.runqtail) // load-acquire, synchronize with the producer
- n := t - h
- n = n - n/2
- if n == 0 {
- if stealRunNextG {
- // Try to steal from _p_.runnext.
- if next := _p_.runnext; next != 0 {
- // Sleep to ensure that _p_ isn't about to run the g we
- // are about to steal.
- // The important use case here is when the g running on _p_
- // ready()s another g and then almost immediately blocks.
- // Instead of stealing runnext in this window, back off
- // to give _p_ a chance to schedule runnext. This will avoid
- // thrashing gs between different Ps.
- usleep(100)
- if !_p_.runnext.cas(next, 0) {
- continue
- }
- batch[batchHead%uint32(len(batch))] = next.ptr()
- return 1
- }
- }
- return 0
- }
- if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t
- continue
- }
- for i := uint32(0); i < n; i++ {
- g := _p_.runq[(h+i)%uint32(len(_p_.runq))]
- batch[(batchHead+i)%uint32(len(batch))] = g
- }
- if cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
- return n
- }
- }
-}
-
-// Steal half of elements from local runnable queue of p2
-// and put onto local runnable queue of p.
-// Returns one of the stolen elements (or nil if failed).
-func runqsteal(_p_, p2 *p, stealRunNextG bool) *g {
- t := _p_.runqtail
- n := runqgrab(p2, &_p_.runq, t, stealRunNextG)
- if n == 0 {
- return nil
- }
- n--
- gp := _p_.runq[(t+n)%uint32(len(_p_.runq))]
- if n == 0 {
- return gp
- }
- h := atomicload(&_p_.runqhead) // load-acquire, synchronize with consumers
- if t-h+n >= uint32(len(_p_.runq)) {
- throw("runqsteal: runq overflow")
- }
- atomicstore(&_p_.runqtail, t+n) // store-release, makes the item available for consumption
- return gp
-}
-
-func testSchedLocalQueue() {
- _p_ := new(p)
- gs := make([]g, len(_p_.runq))
- for i := 0; i < len(_p_.runq); i++ {
- if g, _ := runqget(_p_); g != nil {
- throw("runq is not empty initially")
- }
- for j := 0; j < i; j++ {
- runqput(_p_, &gs[i], false)
- }
- for j := 0; j < i; j++ {
- if g, _ := runqget(_p_); g != &gs[i] {
- print("bad element at iter ", i, "/", j, "\n")
- throw("bad element")
- }
- }
- if g, _ := runqget(_p_); g != nil {
- throw("runq is not empty afterwards")
- }
- }
-}
-
-func testSchedLocalQueueSteal() {
- p1 := new(p)
- p2 := new(p)
- gs := make([]g, len(p1.runq))
- for i := 0; i < len(p1.runq); i++ {
- for j := 0; j < i; j++ {
- gs[j].sig = 0
- runqput(p1, &gs[j], false)
- }
- gp := runqsteal(p2, p1, true)
- s := 0
- if gp != nil {
- s++
- gp.sig++
- }
- for {
- gp, _ = runqget(p2)
- if gp == nil {
- break
- }
- s++
- gp.sig++
- }
- for {
- gp, _ = runqget(p1)
- if gp == nil {
- break
- }
- gp.sig++
- }
- for j := 0; j < i; j++ {
- if gs[j].sig != 1 {
- print("bad element ", j, "(", gs[j].sig, ") at iter ", i, "\n")
- throw("bad element")
- }
- }
- if s != i/2 && s != i/2+1 {
- print("bad steal ", s, ", want ", i/2, " or ", i/2+1, ", iter ", i, "\n")
- throw("bad steal")
- }
- }
-}
-
-//go:linkname setMaxThreads runtime/debug.setMaxThreads
-func setMaxThreads(in int) (out int) {
- lock(&sched.lock)
- out = int(sched.maxmcount)
- sched.maxmcount = int32(in)
- checkmcount()
- unlock(&sched.lock)
- return
-}
-
-func haveexperiment(name string) bool {
- x := goexperiment
- for x != "" {
- xname := ""
- i := index(x, ",")
- if i < 0 {
- xname, x = x, ""
- } else {
- xname, x = x[:i], x[i+1:]
- }
- if xname == name {
- return true
- }
- }
- return false
-}
-
-//go:nosplit
-func procPin() int {
- _g_ := getg()
- mp := _g_.m
-
- mp.locks++
- return int(mp.p.ptr().id)
-}
-
-//go:nosplit
-func procUnpin() {
- _g_ := getg()
- _g_.m.locks--
-}
-
-//go:linkname sync_runtime_procPin sync.runtime_procPin
-//go:nosplit
-func sync_runtime_procPin() int {
- return procPin()
-}
-
-//go:linkname sync_runtime_procUnpin sync.runtime_procUnpin
-//go:nosplit
-func sync_runtime_procUnpin() {
- procUnpin()
-}
-
-//go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin
-//go:nosplit
-func sync_atomic_runtime_procPin() int {
- return procPin()
-}
-
-//go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin
-//go:nosplit
-func sync_atomic_runtime_procUnpin() {
- procUnpin()
-}
-
-// Active spinning for sync.Mutex.
-//go:linkname sync_runtime_canSpin sync.runtime_canSpin
-//go:nosplit
-func sync_runtime_canSpin(i int) bool {
- // sync.Mutex is cooperative, so we are conservative with spinning.
- // Spin only few times and only if running on a multicore machine and
- // GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
- // As opposed to runtime mutex we don't do passive spinning here,
- // because there can be work on global runq on on other Ps.
- if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
- return false
- }
- if p := getg().m.p.ptr(); !runqempty(p) {
- return false
- }
- return true
-}
-
-//go:linkname sync_runtime_doSpin sync.runtime_doSpin
-//go:nosplit
-func sync_runtime_doSpin() {
- procyield(active_spin_cnt)
-}