return nil
}
+ if len(profile.Sample) == 0 {
+ // We accept empty profiles, but there is nothing to do.
+ return nil
+ }
+
+ valueIndex := -1
+ for i, s := range profile.SampleType {
+ // Samples count is the raw data collected, and CPU nanoseconds is just
+ // a scaled version of it, so either one we can find is fine.
+ if (s.Type == "samples" && s.Unit == "count") ||
+ (s.Type == "cpu" && s.Unit == "nanoseconds") {
+ valueIndex = i
+ break
+ }
+ }
+
+ if valueIndex == -1 {
+ log.Fatal("failed to find CPU samples count or CPU nanoseconds value-types in profile.")
+ return nil
+ }
+
g := newGraph(profile, &Options{
CallTree: false,
- SampleValue: func(v []int64) int64 { return v[1] },
+ SampleValue: func(v []int64) int64 { return v[valueIndex] },
})
p := &Profile{
import (
"bufio"
"fmt"
+ "internal/profile"
"internal/testenv"
"io"
"os"
testPGOIntendedInlining(t, dir)
}
+// TestPGOSingleIndex tests that the sample index can not be 1 and compilation
+// will not fail. All it should care about is that the sample type is either
+// CPU nanoseconds or samples count, whichever it finds first.
+func TestPGOSingleIndex(t *testing.T) {
+ for _, tc := range []struct {
+ originalIndex int
+ }{{
+ // The `testdata/pgo/inline/inline_hot.pprof` file is a standard CPU
+ // profile as the runtime would generate. The 0 index contains the
+ // value-type samples and value-unit count. The 1 index contains the
+ // value-type cpu and value-unit nanoseconds. These tests ensure that
+ // the compiler can work with profiles that only have a single index,
+ // but are either samples count or CPU nanoseconds.
+ originalIndex: 0,
+ }, {
+ originalIndex: 1,
+ }} {
+ t.Run(fmt.Sprintf("originalIndex=%d", tc.originalIndex), func(t *testing.T) {
+ wd, err := os.Getwd()
+ if err != nil {
+ t.Fatalf("error getting wd: %v", err)
+ }
+ srcDir := filepath.Join(wd, "testdata/pgo/inline")
+
+ // Copy the module to a scratch location so we can add a go.mod.
+ dir := t.TempDir()
+
+ originalPprofFile, err := os.Open(filepath.Join(srcDir, "inline_hot.pprof"))
+ if err != nil {
+ t.Fatalf("error opening inline_hot.pprof: %v", err)
+ }
+ defer originalPprofFile.Close()
+
+ p, err := profile.Parse(originalPprofFile)
+ if err != nil {
+ t.Fatalf("error parsing inline_hot.pprof: %v", err)
+ }
+
+ // Move the samples count value-type to the 0 index.
+ p.SampleType = []*profile.ValueType{p.SampleType[tc.originalIndex]}
+
+ // Ensure we only have a single set of sample values.
+ for _, s := range p.Sample {
+ s.Value = []int64{s.Value[tc.originalIndex]}
+ }
+
+ modifiedPprofFile, err := os.Create(filepath.Join(dir, "inline_hot.pprof"))
+ if err != nil {
+ t.Fatalf("error creating inline_hot.pprof: %v", err)
+ }
+ defer modifiedPprofFile.Close()
+
+ if err := p.Write(modifiedPprofFile); err != nil {
+ t.Fatalf("error writing inline_hot.pprof: %v", err)
+ }
+
+ for _, file := range []string{"inline_hot.go", "inline_hot_test.go"} {
+ if err := copyFile(filepath.Join(dir, file), filepath.Join(srcDir, file)); err != nil {
+ t.Fatalf("error copying %s: %v", file, err)
+ }
+ }
+
+ testPGOIntendedInlining(t, dir)
+ })
+ }
+}
+
func copyFile(dst, src string) error {
s, err := os.Open(src)
if err != nil {