The Sqrt code previously used explicit constants for 2 and 1/2. This change
replaces multiplication by these constants with increment and decrement of
the floating point exponent directly. This improves performance by ~7-10%
for small inputs and minimal improvement for large inputs.
name old time/op new time/op delta
FloatSqrt/64-4 1.39µs ± 0% 1.29µs ± 3% -7.01% (p=0.016 n=4+5)
FloatSqrt/128-4 2.84µs ± 0% 2.60µs ± 1% -8.33% (p=0.008 n=5+5)
FloatSqrt/256-4 3.24µs ± 1% 2.91µs ± 2% -10.00% (p=0.008 n=5+5)
FloatSqrt/1000-4 7.42µs ± 1% 6.74µs ± 0% -9.16% (p=0.008 n=5+5)
FloatSqrt/10000-4 65.9µs ± 1% 65.3µs ± 4% ~ (p=0.310 n=5+5)
FloatSqrt/100000-4 1.57ms ± 8% 1.52ms ± 1% ~ (p=0.111 n=5+4)
FloatSqrt/
1000000-4 127ms ± 1% 126ms ± 1% ~ (p=0.690 n=5+5)
Change-Id: Id81ac842a9d64981e001c4ca3ff129eebd227593
Reviewed-on: https://go-review.googlesource.com/130835
Reviewed-by: Robert Griesemer <gri@golang.org>
import "math"
var (
- half = NewFloat(0.5)
- two = NewFloat(2.0)
three = NewFloat(3.0)
)
case 0:
// nothing to do
case 1:
- z.Mul(two, z)
+ z.exp++
case -1:
- z.Mul(half, z)
+ z.exp--
}
// 0.25 <= z < 2.0
u.prec = t.prec
u.Mul(t, t) // u = t²
u.Add(u, x) // = t² + x
- u.Mul(half, u) // = ½(t² + x)
+ u.exp-- // = ½(t² + x)
return t.Quo(u, t) // = ½(t² + x)/t
}
ng := func(t *Float) *Float {
u.prec = t.prec
v.prec = t.prec
- u.Mul(t, t) // u = t²
- u.Mul(x, u) // = xt²
- v.Sub(three, u) // v = 3 - xt²
- u.Mul(t, v) // u = t(3 - xt²)
- return t.Mul(half, u) // = ½t(3 - xt²)
+ u.Mul(t, t) // u = t²
+ u.Mul(x, u) // = xt²
+ v.Sub(three, u) // v = 3 - xt²
+ u.Mul(t, v) // u = t(3 - xt²)
+ u.exp-- // = ½t(3 - xt²)
+ return t.Set(u)
+
}
xf, _ := x.Float64()