]> Cypherpunks repositories - gostls13.git/commitdiff
bignum: delete package - functionality subsumed by package big
authorRobert Griesemer <gri@golang.org>
Thu, 15 Jul 2010 23:08:53 +0000 (16:08 -0700)
committerRobert Griesemer <gri@golang.org>
Thu, 15 Jul 2010 23:08:53 +0000 (16:08 -0700)
R=rsc
CC=golang-dev
https://golang.org/cl/1742045

src/pkg/Makefile
src/pkg/exp/bignum/Makefile [deleted file]
src/pkg/exp/bignum/arith.go [deleted file]
src/pkg/exp/bignum/arith_amd64.s [deleted file]
src/pkg/exp/bignum/bignum.go [deleted file]
src/pkg/exp/bignum/bignum_test.go [deleted file]
src/pkg/exp/bignum/integer.go [deleted file]
src/pkg/exp/bignum/nrdiv_test.go [deleted file]
src/pkg/exp/bignum/rational.go [deleted file]

index d43174f6518d4547f086d6040e22ce22905cb8ca..5989e888b244bf0e61a009127833a316b643ac46 100644 (file)
@@ -63,7 +63,6 @@ DIRS=\
        encoding/hex\
        encoding/pem\
        exec\
-       exp/bignum\
        exp/datafmt\
        exp/draw\
        exp/draw/x11\
diff --git a/src/pkg/exp/bignum/Makefile b/src/pkg/exp/bignum/Makefile
deleted file mode 100644 (file)
index 064cf1e..0000000
+++ /dev/null
@@ -1,14 +0,0 @@
-# Copyright 2009 The Go Authors. All rights reserved.
-# Use of this source code is governed by a BSD-style
-# license that can be found in the LICENSE file.
-
-include ../../../Make.$(GOARCH)
-
-TARG=exp/bignum
-GOFILES=\
-       arith.go\
-       bignum.go\
-       integer.go\
-       rational.go\
-
-include ../../../Make.pkg
diff --git a/src/pkg/exp/bignum/arith.go b/src/pkg/exp/bignum/arith.go
deleted file mode 100644 (file)
index aa65dbd..0000000
+++ /dev/null
@@ -1,121 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Fast versions of the routines in this file are in fast.arith.s.
-// Simply replace this file with arith.s (renamed from fast.arith.s)
-// and the bignum package will build and run on a platform that
-// supports the assembly routines.
-
-package bignum
-
-import "unsafe"
-
-// z1<<64 + z0 = x*y
-func Mul128(x, y uint64) (z1, z0 uint64) {
-       // Split x and y into 2 halfwords each, multiply
-       // the halfwords separately while avoiding overflow,
-       // and return the product as 2 words.
-
-       const (
-               W  = uint(unsafe.Sizeof(x)) * 8
-               W2 = W / 2
-               B2 = 1 << W2
-               M2 = B2 - 1
-       )
-
-       if x < y {
-               x, y = y, x
-       }
-
-       if x < B2 {
-               // y < B2 because y <= x
-               // sub-digits of x and y are (0, x) and (0, y)
-               // z = z[0] = x*y
-               z0 = x * y
-               return
-       }
-
-       if y < B2 {
-               // sub-digits of x and y are (x1, x0) and (0, y)
-               // x = (x1*B2 + x0)
-               // y = (y1*B2 + y0)
-               x1, x0 := x>>W2, x&M2
-
-               // x*y = t2*B2*B2 + t1*B2 + t0
-               t0 := x0 * y
-               t1 := x1 * y
-
-               // compute result digits but avoid overflow
-               // z = z[1]*B + z[0] = x*y
-               z0 = t1<<W2 + t0
-               z1 = (t1 + t0>>W2) >> W2
-               return
-       }
-
-       // general case
-       // sub-digits of x and y are (x1, x0) and (y1, y0)
-       // x = (x1*B2 + x0)
-       // y = (y1*B2 + y0)
-       x1, x0 := x>>W2, x&M2
-       y1, y0 := y>>W2, y&M2
-
-       // x*y = t2*B2*B2 + t1*B2 + t0
-       t0 := x0 * y0
-       t1 := x1*y0 + x0*y1
-       t2 := x1 * y1
-
-       // compute result digits but avoid overflow
-       // z = z[1]*B + z[0] = x*y
-       z0 = t1<<W2 + t0
-       z1 = t2 + (t1+t0>>W2)>>W2
-       return
-}
-
-
-// z1<<64 + z0 = x*y + c
-func MulAdd128(x, y, c uint64) (z1, z0 uint64) {
-       // Split x and y into 2 halfwords each, multiply
-       // the halfwords separately while avoiding overflow,
-       // and return the product as 2 words.
-
-       const (
-               W  = uint(unsafe.Sizeof(x)) * 8
-               W2 = W / 2
-               B2 = 1 << W2
-               M2 = B2 - 1
-       )
-
-       // TODO(gri) Should implement special cases for faster execution.
-
-       // general case
-       // sub-digits of x, y, and c are (x1, x0), (y1, y0), (c1, c0)
-       // x = (x1*B2 + x0)
-       // y = (y1*B2 + y0)
-       x1, x0 := x>>W2, x&M2
-       y1, y0 := y>>W2, y&M2
-       c1, c0 := c>>W2, c&M2
-
-       // x*y + c = t2*B2*B2 + t1*B2 + t0
-       t0 := x0*y0 + c0
-       t1 := x1*y0 + x0*y1 + c1
-       t2 := x1 * y1
-
-       // compute result digits but avoid overflow
-       // z = z[1]*B + z[0] = x*y
-       z0 = t1<<W2 + t0
-       z1 = t2 + (t1+t0>>W2)>>W2
-       return
-}
-
-
-// q = (x1<<64 + x0)/y + r
-func Div128(x1, x0, y uint64) (q, r uint64) {
-       if x1 == 0 {
-               q, r = x0/y, x0%y
-               return
-       }
-
-       // TODO(gri) Implement general case.
-       panic("Div128 not implemented for x > 1<<64-1")
-}
diff --git a/src/pkg/exp/bignum/arith_amd64.s b/src/pkg/exp/bignum/arith_amd64.s
deleted file mode 100644 (file)
index 37d5a30..0000000
+++ /dev/null
@@ -1,41 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// This file provides fast assembly versions
-// of the routines in arith.go.
-
-// func Mul128(x, y uint64) (z1, z0 uint64)
-// z1<<64 + z0 = x*y
-//
-TEXT ·Mul128(SB),7,$0
-       MOVQ a+0(FP), AX
-       MULQ a+8(FP)
-       MOVQ DX, a+16(FP)
-       MOVQ AX, a+24(FP)
-       RET
-
-
-// func MulAdd128(x, y, c uint64) (z1, z0 uint64)
-// z1<<64 + z0 = x*y + c
-//
-TEXT ·MulAdd128(SB),7,$0
-       MOVQ a+0(FP), AX
-       MULQ a+8(FP)
-       ADDQ a+16(FP), AX
-       ADCQ $0, DX
-       MOVQ DX, a+24(FP)
-       MOVQ AX, a+32(FP)
-       RET
-
-
-// func Div128(x1, x0, y uint64) (q, r uint64)
-// q = (x1<<64 + x0)/y + r
-//
-TEXT ·Div128(SB),7,$0
-       MOVQ a+0(FP), DX
-       MOVQ a+8(FP), AX
-       DIVQ a+16(FP)
-       MOVQ AX, a+24(FP)
-       MOVQ DX, a+32(FP)
-       RET
diff --git a/src/pkg/exp/bignum/bignum.go b/src/pkg/exp/bignum/bignum.go
deleted file mode 100644 (file)
index 4855831..0000000
+++ /dev/null
@@ -1,1024 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// A package for arbitrary precision arithmethic.
-// It implements the following numeric types:
-//
-//     - Natural       unsigned integers
-//     - Integer       signed integers
-//     - Rational      rational numbers
-//
-// This package has been designed for ease of use but the functions it provides
-// are likely to be quite slow. It may be deprecated eventually. Use package
-// big instead, if possible.
-//
-package bignum
-
-import (
-       "fmt"
-)
-
-// TODO(gri) Complete the set of in-place operations.
-
-// ----------------------------------------------------------------------------
-// Internal representation
-//
-// A natural number of the form
-//
-//   x = x[n-1]*B^(n-1) + x[n-2]*B^(n-2) + ... + x[1]*B + x[0]
-//
-// with 0 <= x[i] < B and 0 <= i < n is stored in a slice of length n,
-// with the digits x[i] as the slice elements.
-//
-// A natural number is normalized if the slice contains no leading 0 digits.
-// During arithmetic operations, denormalized values may occur but are
-// always normalized before returning the final result. The normalized
-// representation of 0 is the empty slice (length = 0).
-//
-// The operations for all other numeric types are implemented on top of
-// the operations for natural numbers.
-//
-// The base B is chosen as large as possible on a given platform but there
-// are a few constraints besides the size of the largest unsigned integer
-// type available:
-//
-// 1) To improve conversion speed between strings and numbers, the base B
-//    is chosen such that division and multiplication by 10 (for decimal
-//    string representation) can be done without using extended-precision
-//    arithmetic. This makes addition, subtraction, and conversion routines
-//    twice as fast. It requires a ``buffer'' of 4 bits per operand digit.
-//    That is, the size of B must be 4 bits smaller then the size of the
-//    type (digit) in which these operations are performed. Having this
-//    buffer also allows for trivial (single-bit) carry computation in
-//    addition and subtraction (optimization suggested by Ken Thompson).
-//
-// 2) Long division requires extended-precision (2-digit) division per digit.
-//    Instead of sacrificing the largest base type for all other operations,
-//    for division the operands are unpacked into ``half-digits'', and the
-//    results are packed again. For faster unpacking/packing, the base size
-//    in bits must be even.
-
-type (
-       digit  uint64
-       digit2 uint32 // half-digits for division
-)
-
-
-const (
-       logW = 64          // word width
-       logH = 4           // bits for a hex digit (= small number)
-       logB = logW - logH // largest bit-width available
-
-       // half-digits
-       _W2 = logB / 2 // width
-       _B2 = 1 << _W2 // base
-       _M2 = _B2 - 1  // mask
-
-       // full digits
-       _W = _W2 * 2 // width
-       _B = 1 << _W // base
-       _M = _B - 1  // mask
-)
-
-
-// ----------------------------------------------------------------------------
-// Support functions
-
-func assert(p bool) {
-       if !p {
-               panic("assert failed")
-       }
-}
-
-
-func isSmall(x digit) bool { return x < 1<<logH }
-
-
-// For debugging. Keep around.
-/*
-func dump(x Natural) {
-       print("[", len(x), "]");
-       for i := len(x) - 1; i >= 0; i-- {
-               print(" ", x[i]);
-       }
-       println();
-}
-*/
-
-
-// ----------------------------------------------------------------------------
-// Natural numbers
-
-// Natural represents an unsigned integer value of arbitrary precision.
-//
-type Natural []digit
-
-
-// Nat creates a small natural number with value x.
-//
-func Nat(x uint64) Natural {
-       if x == 0 {
-               return nil // len == 0
-       }
-
-       // single-digit values
-       // (note: cannot re-use preallocated values because
-       //        the in-place operations may overwrite them)
-       if x < _B {
-               return Natural{digit(x)}
-       }
-
-       // compute number of digits required to represent x
-       // (this is usually 1 or 2, but the algorithm works
-       // for any base)
-       n := 0
-       for t := x; t > 0; t >>= _W {
-               n++
-       }
-
-       // split x into digits
-       z := make(Natural, n)
-       for i := 0; i < n; i++ {
-               z[i] = digit(x & _M)
-               x >>= _W
-       }
-
-       return z
-}
-
-
-// Value returns the lowest 64bits of x.
-//
-func (x Natural) Value() uint64 {
-       // single-digit values
-       n := len(x)
-       switch n {
-       case 0:
-               return 0
-       case 1:
-               return uint64(x[0])
-       }
-
-       // multi-digit values
-       // (this is usually 1 or 2, but the algorithm works
-       // for any base)
-       z := uint64(0)
-       s := uint(0)
-       for i := 0; i < n && s < 64; i++ {
-               z += uint64(x[i]) << s
-               s += _W
-       }
-
-       return z
-}
-
-
-// Predicates
-
-// IsEven returns true iff x is divisible by 2.
-//
-func (x Natural) IsEven() bool { return len(x) == 0 || x[0]&1 == 0 }
-
-
-// IsOdd returns true iff x is not divisible by 2.
-//
-func (x Natural) IsOdd() bool { return len(x) > 0 && x[0]&1 != 0 }
-
-
-// IsZero returns true iff x == 0.
-//
-func (x Natural) IsZero() bool { return len(x) == 0 }
-
-
-// Operations
-//
-// Naming conventions
-//
-// c      carry
-// x, y   operands
-// z      result
-// n, m   len(x), len(y)
-
-func normalize(x Natural) Natural {
-       n := len(x)
-       for n > 0 && x[n-1] == 0 {
-               n--
-       }
-       return x[0:n]
-}
-
-
-// nalloc returns a Natural of n digits. If z is large
-// enough, z is resized and returned. Otherwise, a new
-// Natural is allocated.
-//
-func nalloc(z Natural, n int) Natural {
-       size := n
-       if size <= 0 {
-               size = 4
-       }
-       if size <= cap(z) {
-               return z[0:n]
-       }
-       return make(Natural, n, size)
-}
-
-
-// Nadd sets *zp to the sum x + y.
-// *zp may be x or y.
-//
-func Nadd(zp *Natural, x, y Natural) {
-       n := len(x)
-       m := len(y)
-       if n < m {
-               Nadd(zp, y, x)
-               return
-       }
-
-       z := nalloc(*zp, n+1)
-       c := digit(0)
-       i := 0
-       for i < m {
-               t := c + x[i] + y[i]
-               c, z[i] = t>>_W, t&_M
-               i++
-       }
-       for i < n {
-               t := c + x[i]
-               c, z[i] = t>>_W, t&_M
-               i++
-       }
-       if c != 0 {
-               z[i] = c
-               i++
-       }
-       *zp = z[0:i]
-}
-
-
-// Add returns the sum z = x + y.
-//
-func (x Natural) Add(y Natural) Natural {
-       var z Natural
-       Nadd(&z, x, y)
-       return z
-}
-
-
-// Nsub sets *zp to the difference x - y for x >= y.
-// If x < y, an underflow run-time error occurs (use Cmp to test if x >= y).
-// *zp may be x or y.
-//
-func Nsub(zp *Natural, x, y Natural) {
-       n := len(x)
-       m := len(y)
-       if n < m {
-               panic("underflow")
-       }
-
-       z := nalloc(*zp, n)
-       c := digit(0)
-       i := 0
-       for i < m {
-               t := c + x[i] - y[i]
-               c, z[i] = digit(int64(t)>>_W), t&_M // requires arithmetic shift!
-               i++
-       }
-       for i < n {
-               t := c + x[i]
-               c, z[i] = digit(int64(t)>>_W), t&_M // requires arithmetic shift!
-               i++
-       }
-       if int64(c) < 0 {
-               panic("underflow")
-       }
-       *zp = normalize(z)
-}
-
-
-// Sub returns the difference x - y for x >= y.
-// If x < y, an underflow run-time error occurs (use Cmp to test if x >= y).
-//
-func (x Natural) Sub(y Natural) Natural {
-       var z Natural
-       Nsub(&z, x, y)
-       return z
-}
-
-
-// Returns z1 = (x*y + c) div B, z0 = (x*y + c) mod B.
-//
-func muladd11(x, y, c digit) (digit, digit) {
-       z1, z0 := MulAdd128(uint64(x), uint64(y), uint64(c))
-       return digit(z1<<(64-logB) | z0>>logB), digit(z0 & _M)
-}
-
-
-func mul1(z, x Natural, y digit) (c digit) {
-       for i := 0; i < len(x); i++ {
-               c, z[i] = muladd11(x[i], y, c)
-       }
-       return
-}
-
-
-// Nscale sets *z to the scaled value (*z) * d.
-//
-func Nscale(z *Natural, d uint64) {
-       switch {
-       case d == 0:
-               *z = Nat(0)
-               return
-       case d == 1:
-               return
-       case d >= _B:
-               *z = z.Mul1(d)
-               return
-       }
-
-       c := mul1(*z, *z, digit(d))
-
-       if c != 0 {
-               n := len(*z)
-               if n >= cap(*z) {
-                       zz := make(Natural, n+1)
-                       for i, d := range *z {
-                               zz[i] = d
-                       }
-                       *z = zz
-               } else {
-                       *z = (*z)[0 : n+1]
-               }
-               (*z)[n] = c
-       }
-}
-
-
-// Computes x = x*d + c for small d's.
-//
-func muladd1(x Natural, d, c digit) Natural {
-       assert(isSmall(d-1) && isSmall(c))
-       n := len(x)
-       z := make(Natural, n+1)
-
-       for i := 0; i < n; i++ {
-               t := c + x[i]*d
-               c, z[i] = t>>_W, t&_M
-       }
-       z[n] = c
-
-       return normalize(z)
-}
-
-
-// Mul1 returns the product x * d.
-//
-func (x Natural) Mul1(d uint64) Natural {
-       switch {
-       case d == 0:
-               return Nat(0)
-       case d == 1:
-               return x
-       case isSmall(digit(d)):
-               muladd1(x, digit(d), 0)
-       case d >= _B:
-               return x.Mul(Nat(d))
-       }
-
-       z := make(Natural, len(x)+1)
-       c := mul1(z, x, digit(d))
-       z[len(x)] = c
-       return normalize(z)
-}
-
-
-// Mul returns the product x * y.
-//
-func (x Natural) Mul(y Natural) Natural {
-       n := len(x)
-       m := len(y)
-       if n < m {
-               return y.Mul(x)
-       }
-
-       if m == 0 {
-               return Nat(0)
-       }
-
-       if m == 1 && y[0] < _B {
-               return x.Mul1(uint64(y[0]))
-       }
-
-       z := make(Natural, n+m)
-       for j := 0; j < m; j++ {
-               d := y[j]
-               if d != 0 {
-                       c := digit(0)
-                       for i := 0; i < n; i++ {
-                               c, z[i+j] = muladd11(x[i], d, z[i+j]+c)
-                       }
-                       z[n+j] = c
-               }
-       }
-
-       return normalize(z)
-}
-
-
-// DivMod needs multi-precision division, which is not available if digit
-// is already using the largest uint size. Instead, unpack each operand
-// into operands with twice as many digits of half the size (digit2), do
-// DivMod, and then pack the results again.
-
-func unpack(x Natural) []digit2 {
-       n := len(x)
-       z := make([]digit2, n*2+1) // add space for extra digit (used by DivMod)
-       for i := 0; i < n; i++ {
-               t := x[i]
-               z[i*2] = digit2(t & _M2)
-               z[i*2+1] = digit2(t >> _W2 & _M2)
-       }
-
-       // normalize result
-       k := 2 * n
-       for k > 0 && z[k-1] == 0 {
-               k--
-       }
-       return z[0:k] // trim leading 0's
-}
-
-
-func pack(x []digit2) Natural {
-       n := (len(x) + 1) / 2
-       z := make(Natural, n)
-       if len(x)&1 == 1 {
-               // handle odd len(x)
-               n--
-               z[n] = digit(x[n*2])
-       }
-       for i := 0; i < n; i++ {
-               z[i] = digit(x[i*2+1])<<_W2 | digit(x[i*2])
-       }
-       return normalize(z)
-}
-
-
-func mul21(z, x []digit2, y digit2) digit2 {
-       c := digit(0)
-       f := digit(y)
-       for i := 0; i < len(x); i++ {
-               t := c + digit(x[i])*f
-               c, z[i] = t>>_W2, digit2(t&_M2)
-       }
-       return digit2(c)
-}
-
-
-func div21(z, x []digit2, y digit2) digit2 {
-       c := digit(0)
-       d := digit(y)
-       for i := len(x) - 1; i >= 0; i-- {
-               t := c<<_W2 + digit(x[i])
-               c, z[i] = t%d, digit2(t/d)
-       }
-       return digit2(c)
-}
-
-
-// divmod returns q and r with x = y*q + r and 0 <= r < y.
-// x and y are destroyed in the process.
-//
-// The algorithm used here is based on 1). 2) describes the same algorithm
-// in C. A discussion and summary of the relevant theorems can be found in
-// 3). 3) also describes an easier way to obtain the trial digit - however
-// it relies on tripple-precision arithmetic which is why Knuth's method is
-// used here.
-//
-// 1) D. Knuth, The Art of Computer Programming. Volume 2. Seminumerical
-//    Algorithms. Addison-Wesley, Reading, 1969.
-//    (Algorithm D, Sec. 4.3.1)
-//
-// 2) Henry S. Warren, Jr., Hacker's Delight. Addison-Wesley, 2003.
-//    (9-2 Multiword Division, p.140ff)
-//
-// 3) P. Brinch Hansen, ``Multiple-length division revisited: A tour of the
-//    minefield''. Software - Practice and Experience 24, (June 1994),
-//    579-601. John Wiley & Sons, Ltd.
-
-func divmod(x, y []digit2) ([]digit2, []digit2) {
-       n := len(x)
-       m := len(y)
-       if m == 0 {
-               panic("division by zero")
-       }
-       assert(n+1 <= cap(x)) // space for one extra digit
-       x = x[0 : n+1]
-       assert(x[n] == 0)
-
-       if m == 1 {
-               // division by single digit
-               // result is shifted left by 1 in place!
-               x[0] = div21(x[1:n+1], x[0:n], y[0])
-
-       } else if m > n {
-               // y > x => quotient = 0, remainder = x
-               // TODO in this case we shouldn't even unpack x and y
-               m = n
-
-       } else {
-               // general case
-               assert(2 <= m && m <= n)
-
-               // normalize x and y
-               // TODO Instead of multiplying, it would be sufficient to
-               //      shift y such that the normalization condition is
-               //      satisfied (as done in Hacker's Delight).
-               f := _B2 / (digit(y[m-1]) + 1)
-               if f != 1 {
-                       mul21(x, x, digit2(f))
-                       mul21(y, y, digit2(f))
-               }
-               assert(_B2/2 <= y[m-1] && y[m-1] < _B2) // incorrect scaling
-
-               y1, y2 := digit(y[m-1]), digit(y[m-2])
-               for i := n - m; i >= 0; i-- {
-                       k := i + m
-
-                       // compute trial digit (Knuth)
-                       var q digit
-                       {
-                               x0, x1, x2 := digit(x[k]), digit(x[k-1]), digit(x[k-2])
-                               if x0 != y1 {
-                                       q = (x0<<_W2 + x1) / y1
-                               } else {
-                                       q = _B2 - 1
-                               }
-                               for y2*q > (x0<<_W2+x1-y1*q)<<_W2+x2 {
-                                       q--
-                               }
-                       }
-
-                       // subtract y*q
-                       c := digit(0)
-                       for j := 0; j < m; j++ {
-                               t := c + digit(x[i+j]) - digit(y[j])*q
-                               c, x[i+j] = digit(int64(t)>>_W2), digit2(t&_M2) // requires arithmetic shift!
-                       }
-                       x[k] = digit2((c + digit(x[k])) & _M2)
-
-                       // correct if trial digit was too large
-                       if x[k] != 0 {
-                               // add y
-                               c := digit(0)
-                               for j := 0; j < m; j++ {
-                                       t := c + digit(x[i+j]) + digit(y[j])
-                                       c, x[i+j] = t>>_W2, digit2(t&_M2)
-                               }
-                               x[k] = digit2((c + digit(x[k])) & _M2)
-                               assert(x[k] == 0)
-                               // correct trial digit
-                               q--
-                       }
-
-                       x[k] = digit2(q)
-               }
-
-               // undo normalization for remainder
-               if f != 1 {
-                       c := div21(x[0:m], x[0:m], digit2(f))
-                       assert(c == 0)
-               }
-       }
-
-       return x[m : n+1], x[0:m]
-}
-
-
-// Div returns the quotient q = x / y for y > 0,
-// with x = y*q + r and 0 <= r < y.
-// If y == 0, a division-by-zero run-time error occurs.
-//
-func (x Natural) Div(y Natural) Natural {
-       q, _ := divmod(unpack(x), unpack(y))
-       return pack(q)
-}
-
-
-// Mod returns the modulus r of the division x / y for y > 0,
-// with x = y*q + r and 0 <= r < y.
-// If y == 0, a division-by-zero run-time error occurs.
-//
-func (x Natural) Mod(y Natural) Natural {
-       _, r := divmod(unpack(x), unpack(y))
-       return pack(r)
-}
-
-
-// DivMod returns the pair (x.Div(y), x.Mod(y)) for y > 0.
-// If y == 0, a division-by-zero run-time error occurs.
-//
-func (x Natural) DivMod(y Natural) (Natural, Natural) {
-       q, r := divmod(unpack(x), unpack(y))
-       return pack(q), pack(r)
-}
-
-
-func shl(z, x Natural, s uint) digit {
-       assert(s <= _W)
-       n := len(x)
-       c := digit(0)
-       for i := 0; i < n; i++ {
-               c, z[i] = x[i]>>(_W-s), x[i]<<s&_M|c
-       }
-       return c
-}
-
-
-// Shl implements ``shift left'' x << s. It returns x * 2^s.
-//
-func (x Natural) Shl(s uint) Natural {
-       n := uint(len(x))
-       m := n + s/_W
-       z := make(Natural, m+1)
-
-       z[m] = shl(z[m-n:m], x, s%_W)
-
-       return normalize(z)
-}
-
-
-func shr(z, x Natural, s uint) digit {
-       assert(s <= _W)
-       n := len(x)
-       c := digit(0)
-       for i := n - 1; i >= 0; i-- {
-               c, z[i] = x[i]<<(_W-s)&_M, x[i]>>s|c
-       }
-       return c
-}
-
-
-// Shr implements ``shift right'' x >> s. It returns x / 2^s.
-//
-func (x Natural) Shr(s uint) Natural {
-       n := uint(len(x))
-       m := n - s/_W
-       if m > n { // check for underflow
-               m = 0
-       }
-       z := make(Natural, m)
-
-       shr(z, x[n-m:n], s%_W)
-
-       return normalize(z)
-}
-
-
-// And returns the ``bitwise and'' x & y for the 2's-complement representation of x and y.
-//
-func (x Natural) And(y Natural) Natural {
-       n := len(x)
-       m := len(y)
-       if n < m {
-               return y.And(x)
-       }
-
-       z := make(Natural, m)
-       for i := 0; i < m; i++ {
-               z[i] = x[i] & y[i]
-       }
-       // upper bits are 0
-
-       return normalize(z)
-}
-
-
-func copy(z, x Natural) {
-       for i, e := range x {
-               z[i] = e
-       }
-}
-
-
-// AndNot returns the ``bitwise clear'' x &^ y for the 2's-complement representation of x and y.
-//
-func (x Natural) AndNot(y Natural) Natural {
-       n := len(x)
-       m := len(y)
-       if n < m {
-               m = n
-       }
-
-       z := make(Natural, n)
-       for i := 0; i < m; i++ {
-               z[i] = x[i] &^ y[i]
-       }
-       copy(z[m:n], x[m:n])
-
-       return normalize(z)
-}
-
-
-// Or returns the ``bitwise or'' x | y for the 2's-complement representation of x and y.
-//
-func (x Natural) Or(y Natural) Natural {
-       n := len(x)
-       m := len(y)
-       if n < m {
-               return y.Or(x)
-       }
-
-       z := make(Natural, n)
-       for i := 0; i < m; i++ {
-               z[i] = x[i] | y[i]
-       }
-       copy(z[m:n], x[m:n])
-
-       return z
-}
-
-
-// Xor returns the ``bitwise exclusive or'' x ^ y for the 2's-complement representation of x and y.
-//
-func (x Natural) Xor(y Natural) Natural {
-       n := len(x)
-       m := len(y)
-       if n < m {
-               return y.Xor(x)
-       }
-
-       z := make(Natural, n)
-       for i := 0; i < m; i++ {
-               z[i] = x[i] ^ y[i]
-       }
-       copy(z[m:n], x[m:n])
-
-       return normalize(z)
-}
-
-
-// Cmp compares x and y. The result is an int value
-//
-//   <  0 if x <  y
-//   == 0 if x == y
-//   >  0 if x >  y
-//
-func (x Natural) Cmp(y Natural) int {
-       n := len(x)
-       m := len(y)
-
-       if n != m || n == 0 {
-               return n - m
-       }
-
-       i := n - 1
-       for i > 0 && x[i] == y[i] {
-               i--
-       }
-
-       d := 0
-       switch {
-       case x[i] < y[i]:
-               d = -1
-       case x[i] > y[i]:
-               d = 1
-       }
-
-       return d
-}
-
-
-// log2 computes the binary logarithm of x for x > 0.
-// The result is the integer n for which 2^n <= x < 2^(n+1).
-// If x == 0 a run-time error occurs.
-//
-func log2(x uint64) uint {
-       assert(x > 0)
-       n := uint(0)
-       for x > 0 {
-               x >>= 1
-               n++
-       }
-       return n - 1
-}
-
-
-// Log2 computes the binary logarithm of x for x > 0.
-// The result is the integer n for which 2^n <= x < 2^(n+1).
-// If x == 0 a run-time error occurs.
-//
-func (x Natural) Log2() uint {
-       n := len(x)
-       if n > 0 {
-               return (uint(n)-1)*_W + log2(uint64(x[n-1]))
-       }
-       panic("Log2(0)")
-}
-
-
-// Computes x = x div d in place (modifies x) for small d's.
-// Returns updated x and x mod d.
-//
-func divmod1(x Natural, d digit) (Natural, digit) {
-       assert(0 < d && isSmall(d-1))
-
-       c := digit(0)
-       for i := len(x) - 1; i >= 0; i-- {
-               t := c<<_W + x[i]
-               c, x[i] = t%d, t/d
-       }
-
-       return normalize(x), c
-}
-
-
-// ToString converts x to a string for a given base, with 2 <= base <= 16.
-//
-func (x Natural) ToString(base uint) string {
-       if len(x) == 0 {
-               return "0"
-       }
-
-       // allocate buffer for conversion
-       assert(2 <= base && base <= 16)
-       n := (x.Log2()+1)/log2(uint64(base)) + 1 // +1: round up
-       s := make([]byte, n)
-
-       // don't destroy x
-       t := make(Natural, len(x))
-       copy(t, x)
-
-       // convert
-       i := n
-       for !t.IsZero() {
-               i--
-               var d digit
-               t, d = divmod1(t, digit(base))
-               s[i] = "0123456789abcdef"[d]
-       }
-
-       return string(s[i:n])
-}
-
-
-// String converts x to its decimal string representation.
-// x.String() is the same as x.ToString(10).
-//
-func (x Natural) String() string { return x.ToString(10) }
-
-
-func fmtbase(c int) uint {
-       switch c {
-       case 'b':
-               return 2
-       case 'o':
-               return 8
-       case 'x':
-               return 16
-       }
-       return 10
-}
-
-
-// Format is a support routine for fmt.Formatter. It accepts
-// the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal).
-//
-func (x Natural) Format(h fmt.State, c int) { fmt.Fprintf(h, "%s", x.ToString(fmtbase(c))) }
-
-
-func hexvalue(ch byte) uint {
-       d := uint(1 << logH)
-       switch {
-       case '0' <= ch && ch <= '9':
-               d = uint(ch - '0')
-       case 'a' <= ch && ch <= 'f':
-               d = uint(ch-'a') + 10
-       case 'A' <= ch && ch <= 'F':
-               d = uint(ch-'A') + 10
-       }
-       return d
-}
-
-
-// NatFromString returns the natural number corresponding to the
-// longest possible prefix of s representing a natural number in a
-// given conversion base, the actual conversion base used, and the
-// prefix length. The syntax of natural numbers follows the syntax
-// of unsigned integer literals in Go.
-//
-// If the base argument is 0, the string prefix determines the actual
-// conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the
-// ``0'' prefix selects base 8. Otherwise the selected base is 10.
-//
-func NatFromString(s string, base uint) (Natural, uint, int) {
-       // determine base if necessary
-       i, n := 0, len(s)
-       if base == 0 {
-               base = 10
-               if n > 0 && s[0] == '0' {
-                       if n > 1 && (s[1] == 'x' || s[1] == 'X') {
-                               base, i = 16, 2
-                       } else {
-                               base, i = 8, 1
-                       }
-               }
-       }
-
-       // convert string
-       assert(2 <= base && base <= 16)
-       x := Nat(0)
-       for ; i < n; i++ {
-               d := hexvalue(s[i])
-               if d < base {
-                       x = muladd1(x, digit(base), digit(d))
-               } else {
-                       break
-               }
-       }
-
-       return x, base, i
-}
-
-
-// Natural number functions
-
-func pop1(x digit) uint {
-       n := uint(0)
-       for x != 0 {
-               x &= x - 1
-               n++
-       }
-       return n
-}
-
-
-// Pop computes the ``population count'' of (the number of 1 bits in) x.
-//
-func (x Natural) Pop() uint {
-       n := uint(0)
-       for i := len(x) - 1; i >= 0; i-- {
-               n += pop1(x[i])
-       }
-       return n
-}
-
-
-// Pow computes x to the power of n.
-//
-func (xp Natural) Pow(n uint) Natural {
-       z := Nat(1)
-       x := xp
-       for n > 0 {
-               // z * x^n == x^n0
-               if n&1 == 1 {
-                       z = z.Mul(x)
-               }
-               x, n = x.Mul(x), n/2
-       }
-       return z
-}
-
-
-// MulRange computes the product of all the unsigned integers
-// in the range [a, b] inclusively.
-//
-func MulRange(a, b uint) Natural {
-       switch {
-       case a > b:
-               return Nat(1)
-       case a == b:
-               return Nat(uint64(a))
-       case a+1 == b:
-               return Nat(uint64(a)).Mul(Nat(uint64(b)))
-       }
-       m := (a + b) >> 1
-       assert(a <= m && m < b)
-       return MulRange(a, m).Mul(MulRange(m+1, b))
-}
-
-
-// Fact computes the factorial of n (Fact(n) == MulRange(2, n)).
-//
-func Fact(n uint) Natural {
-       // Using MulRange() instead of the basic for-loop
-       // lead to faster factorial computation.
-       return MulRange(2, n)
-}
-
-
-// Binomial computes the binomial coefficient of (n, k).
-//
-func Binomial(n, k uint) Natural { return MulRange(n-k+1, n).Div(MulRange(1, k)) }
-
-
-// Gcd computes the gcd of x and y.
-//
-func (x Natural) Gcd(y Natural) Natural {
-       // Euclidean algorithm.
-       a, b := x, y
-       for !b.IsZero() {
-               a, b = b, a.Mod(b)
-       }
-       return a
-}
diff --git a/src/pkg/exp/bignum/bignum_test.go b/src/pkg/exp/bignum/bignum_test.go
deleted file mode 100644 (file)
index 8db93aa..0000000
+++ /dev/null
@@ -1,681 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-package bignum
-
-import (
-       "fmt"
-       "testing"
-)
-
-const (
-       sa = "991"
-       sb = "2432902008176640000" // 20!
-       sc = "933262154439441526816992388562667004907159682643816214685929" +
-               "638952175999932299156089414639761565182862536979208272237582" +
-               "51185210916864000000000000000000000000" // 100!
-       sp = "170141183460469231731687303715884105727" // prime
-)
-
-func natFromString(s string, base uint, slen *int) Natural {
-       x, _, len := NatFromString(s, base)
-       if slen != nil {
-               *slen = len
-       }
-       return x
-}
-
-
-func intFromString(s string, base uint, slen *int) *Integer {
-       x, _, len := IntFromString(s, base)
-       if slen != nil {
-               *slen = len
-       }
-       return x
-}
-
-
-func ratFromString(s string, base uint, slen *int) *Rational {
-       x, _, len := RatFromString(s, base)
-       if slen != nil {
-               *slen = len
-       }
-       return x
-}
-
-
-var (
-       nat_zero = Nat(0)
-       nat_one  = Nat(1)
-       nat_two  = Nat(2)
-       a        = natFromString(sa, 10, nil)
-       b        = natFromString(sb, 10, nil)
-       c        = natFromString(sc, 10, nil)
-       p        = natFromString(sp, 10, nil)
-       int_zero = Int(0)
-       int_one  = Int(1)
-       int_two  = Int(2)
-       ip       = intFromString(sp, 10, nil)
-       rat_zero = Rat(0, 1)
-       rat_half = Rat(1, 2)
-       rat_one  = Rat(1, 1)
-       rat_two  = Rat(2, 1)
-)
-
-
-var test_msg string
-var tester *testing.T
-
-func test(n uint, b bool) {
-       if !b {
-               tester.Fatalf("TEST failed: %s (%d)", test_msg, n)
-       }
-}
-
-
-func nat_eq(n uint, x, y Natural) {
-       if x.Cmp(y) != 0 {
-               tester.Fatalf("TEST failed: %s (%d)\nx = %v\ny = %v", test_msg, n, &x, &y)
-       }
-}
-
-
-func int_eq(n uint, x, y *Integer) {
-       if x.Cmp(y) != 0 {
-               tester.Fatalf("TEST failed: %s (%d)\nx = %v\ny = %v", test_msg, n, x, y)
-       }
-}
-
-
-func rat_eq(n uint, x, y *Rational) {
-       if x.Cmp(y) != 0 {
-               tester.Fatalf("TEST failed: %s (%d)\nx = %v\ny = %v", test_msg, n, x, y)
-       }
-}
-
-
-func TestNatConv(t *testing.T) {
-       tester = t
-       test_msg = "NatConvA"
-       type entry1 struct {
-               x uint64
-               s string
-       }
-       tab := []entry1{
-               entry1{0, "0"},
-               entry1{255, "255"},
-               entry1{65535, "65535"},
-               entry1{4294967295, "4294967295"},
-               entry1{18446744073709551615, "18446744073709551615"},
-       }
-       for i, e := range tab {
-               test(100+uint(i), Nat(e.x).String() == e.s)
-               test(200+uint(i), natFromString(e.s, 0, nil).Value() == e.x)
-       }
-
-       test_msg = "NatConvB"
-       for i := uint(0); i < 100; i++ {
-               test(i, Nat(uint64(i)).String() == fmt.Sprintf("%d", i))
-       }
-
-       test_msg = "NatConvC"
-       z := uint64(7)
-       for i := uint(0); i <= 64; i++ {
-               test(i, Nat(z).Value() == z)
-               z <<= 1
-       }
-
-       test_msg = "NatConvD"
-       nat_eq(0, a, Nat(991))
-       nat_eq(1, b, Fact(20))
-       nat_eq(2, c, Fact(100))
-       test(3, a.String() == sa)
-       test(4, b.String() == sb)
-       test(5, c.String() == sc)
-
-       test_msg = "NatConvE"
-       var slen int
-       nat_eq(10, natFromString("0", 0, nil), nat_zero)
-       nat_eq(11, natFromString("123", 0, nil), Nat(123))
-       nat_eq(12, natFromString("077", 0, nil), Nat(7*8+7))
-       nat_eq(13, natFromString("0x1f", 0, nil), Nat(1*16+15))
-       nat_eq(14, natFromString("0x1fg", 0, &slen), Nat(1*16+15))
-       test(4, slen == 4)
-
-       test_msg = "NatConvF"
-       tmp := c.Mul(c)
-       for base := uint(2); base <= 16; base++ {
-               nat_eq(base, natFromString(tmp.ToString(base), base, nil), tmp)
-       }
-
-       test_msg = "NatConvG"
-       x := Nat(100)
-       y, _, _ := NatFromString(fmt.Sprintf("%b", &x), 2)
-       nat_eq(100, y, x)
-}
-
-
-func abs(x int64) uint64 {
-       if x < 0 {
-               x = -x
-       }
-       return uint64(x)
-}
-
-
-func TestIntConv(t *testing.T) {
-       tester = t
-       test_msg = "IntConvA"
-       type entry2 struct {
-               x int64
-               s string
-       }
-       tab := []entry2{
-               entry2{0, "0"},
-               entry2{-128, "-128"},
-               entry2{127, "127"},
-               entry2{-32768, "-32768"},
-               entry2{32767, "32767"},
-               entry2{-2147483648, "-2147483648"},
-               entry2{2147483647, "2147483647"},
-               entry2{-9223372036854775808, "-9223372036854775808"},
-               entry2{9223372036854775807, "9223372036854775807"},
-       }
-       for i, e := range tab {
-               test(100+uint(i), Int(e.x).String() == e.s)
-               test(200+uint(i), intFromString(e.s, 0, nil).Value() == e.x)
-               test(300+uint(i), Int(e.x).Abs().Value() == abs(e.x))
-       }
-
-       test_msg = "IntConvB"
-       var slen int
-       int_eq(0, intFromString("0", 0, nil), int_zero)
-       int_eq(1, intFromString("-0", 0, nil), int_zero)
-       int_eq(2, intFromString("123", 0, nil), Int(123))
-       int_eq(3, intFromString("-123", 0, nil), Int(-123))
-       int_eq(4, intFromString("077", 0, nil), Int(7*8+7))
-       int_eq(5, intFromString("-077", 0, nil), Int(-(7*8 + 7)))
-       int_eq(6, intFromString("0x1f", 0, nil), Int(1*16+15))
-       int_eq(7, intFromString("-0x1f", 0, &slen), Int(-(1*16 + 15)))
-       test(7, slen == 5)
-       int_eq(8, intFromString("+0x1f", 0, &slen), Int(+(1*16 + 15)))
-       test(8, slen == 5)
-       int_eq(9, intFromString("0x1fg", 0, &slen), Int(1*16+15))
-       test(9, slen == 4)
-       int_eq(10, intFromString("-0x1fg", 0, &slen), Int(-(1*16 + 15)))
-       test(10, slen == 5)
-}
-
-
-func TestRatConv(t *testing.T) {
-       tester = t
-       test_msg = "RatConv"
-       var slen int
-       rat_eq(0, ratFromString("0", 0, nil), rat_zero)
-       rat_eq(1, ratFromString("0/1", 0, nil), rat_zero)
-       rat_eq(2, ratFromString("0/01", 0, nil), rat_zero)
-       rat_eq(3, ratFromString("0x14/10", 0, &slen), rat_two)
-       test(4, slen == 7)
-       rat_eq(5, ratFromString("0.", 0, nil), rat_zero)
-       rat_eq(6, ratFromString("0.001f", 10, nil), Rat(1, 1000))
-       rat_eq(7, ratFromString(".1", 0, nil), Rat(1, 10))
-       rat_eq(8, ratFromString("10101.0101", 2, nil), Rat(0x155, 1<<4))
-       rat_eq(9, ratFromString("-0003.145926", 10, &slen), Rat(-3145926, 1000000))
-       test(10, slen == 12)
-       rat_eq(11, ratFromString("1e2", 0, nil), Rat(100, 1))
-       rat_eq(12, ratFromString("1e-2", 0, nil), Rat(1, 100))
-       rat_eq(13, ratFromString("1.1e2", 0, nil), Rat(110, 1))
-       rat_eq(14, ratFromString(".1e2x", 0, &slen), Rat(10, 1))
-       test(15, slen == 4)
-}
-
-
-func add(x, y Natural) Natural {
-       z1 := x.Add(y)
-       z2 := y.Add(x)
-       if z1.Cmp(z2) != 0 {
-               tester.Fatalf("addition not symmetric:\n\tx = %v\n\ty = %t", x, y)
-       }
-       return z1
-}
-
-
-func sum(n uint64, scale Natural) Natural {
-       s := nat_zero
-       for ; n > 0; n-- {
-               s = add(s, Nat(n).Mul(scale))
-       }
-       return s
-}
-
-
-func TestNatAdd(t *testing.T) {
-       tester = t
-       test_msg = "NatAddA"
-       nat_eq(0, add(nat_zero, nat_zero), nat_zero)
-       nat_eq(1, add(nat_zero, c), c)
-
-       test_msg = "NatAddB"
-       for i := uint64(0); i < 100; i++ {
-               t := Nat(i)
-               nat_eq(uint(i), sum(i, c), t.Mul(t).Add(t).Shr(1).Mul(c))
-       }
-}
-
-
-func mul(x, y Natural) Natural {
-       z1 := x.Mul(y)
-       z2 := y.Mul(x)
-       if z1.Cmp(z2) != 0 {
-               tester.Fatalf("multiplication not symmetric:\n\tx = %v\n\ty = %t", x, y)
-       }
-       if !x.IsZero() && z1.Div(x).Cmp(y) != 0 {
-               tester.Fatalf("multiplication/division not inverse (A):\n\tx = %v\n\ty = %t", x, y)
-       }
-       if !y.IsZero() && z1.Div(y).Cmp(x) != 0 {
-               tester.Fatalf("multiplication/division not inverse (B):\n\tx = %v\n\ty = %t", x, y)
-       }
-       return z1
-}
-
-
-func TestNatSub(t *testing.T) {
-       tester = t
-       test_msg = "NatSubA"
-       nat_eq(0, nat_zero.Sub(nat_zero), nat_zero)
-       nat_eq(1, c.Sub(nat_zero), c)
-
-       test_msg = "NatSubB"
-       for i := uint64(0); i < 100; i++ {
-               t := sum(i, c)
-               for j := uint64(0); j <= i; j++ {
-                       t = t.Sub(mul(Nat(j), c))
-               }
-               nat_eq(uint(i), t, nat_zero)
-       }
-}
-
-
-func TestNatMul(t *testing.T) {
-       tester = t
-       test_msg = "NatMulA"
-       nat_eq(0, mul(c, nat_zero), nat_zero)
-       nat_eq(1, mul(c, nat_one), c)
-
-       test_msg = "NatMulB"
-       nat_eq(0, b.Mul(MulRange(0, 100)), nat_zero)
-       nat_eq(1, b.Mul(MulRange(21, 100)), c)
-
-       test_msg = "NatMulC"
-       const n = 100
-       p := b.Mul(c).Shl(n)
-       for i := uint(0); i < n; i++ {
-               nat_eq(i, mul(b.Shl(i), c.Shl(n-i)), p)
-       }
-}
-
-
-func TestNatDiv(t *testing.T) {
-       tester = t
-       test_msg = "NatDivA"
-       nat_eq(0, c.Div(nat_one), c)
-       nat_eq(1, c.Div(Nat(100)), Fact(99))
-       nat_eq(2, b.Div(c), nat_zero)
-       nat_eq(4, nat_one.Shl(100).Div(nat_one.Shl(90)), nat_one.Shl(10))
-       nat_eq(5, c.Div(b), MulRange(21, 100))
-
-       test_msg = "NatDivB"
-       const n = 100
-       p := Fact(n)
-       for i := uint(0); i < n; i++ {
-               nat_eq(100+i, p.Div(MulRange(1, i)), MulRange(i+1, n))
-       }
-
-       // a specific test case that exposed a bug in package big
-       test_msg = "NatDivC"
-       x := natFromString("69720375229712477164533808935312303556800", 10, nil)
-       y := natFromString("3099044504245996706400", 10, nil)
-       q := natFromString("22497377864108980962", 10, nil)
-       r := natFromString("0", 10, nil)
-       qc, rc := x.DivMod(y)
-       nat_eq(0, q, qc)
-       nat_eq(1, r, rc)
-}
-
-
-func TestIntQuoRem(t *testing.T) {
-       tester = t
-       test_msg = "IntQuoRem"
-       type T struct {
-               x, y, q, r int64
-       }
-       a := []T{
-               T{+8, +3, +2, +2},
-               T{+8, -3, -2, +2},
-               T{-8, +3, -2, -2},
-               T{-8, -3, +2, -2},
-               T{+1, +2, 0, +1},
-               T{+1, -2, 0, +1},
-               T{-1, +2, 0, -1},
-               T{-1, -2, 0, -1},
-       }
-       for i := uint(0); i < uint(len(a)); i++ {
-               e := &a[i]
-               x, y := Int(e.x).Mul(ip), Int(e.y).Mul(ip)
-               q, r := Int(e.q), Int(e.r).Mul(ip)
-               qq, rr := x.QuoRem(y)
-               int_eq(4*i+0, x.Quo(y), q)
-               int_eq(4*i+1, x.Rem(y), r)
-               int_eq(4*i+2, qq, q)
-               int_eq(4*i+3, rr, r)
-       }
-}
-
-
-func TestIntDivMod(t *testing.T) {
-       tester = t
-       test_msg = "IntDivMod"
-       type T struct {
-               x, y, q, r int64
-       }
-       a := []T{
-               T{+8, +3, +2, +2},
-               T{+8, -3, -2, +2},
-               T{-8, +3, -3, +1},
-               T{-8, -3, +3, +1},
-               T{+1, +2, 0, +1},
-               T{+1, -2, 0, +1},
-               T{-1, +2, -1, +1},
-               T{-1, -2, +1, +1},
-       }
-       for i := uint(0); i < uint(len(a)); i++ {
-               e := &a[i]
-               x, y := Int(e.x).Mul(ip), Int(e.y).Mul(ip)
-               q, r := Int(e.q), Int(e.r).Mul(ip)
-               qq, rr := x.DivMod(y)
-               int_eq(4*i+0, x.Div(y), q)
-               int_eq(4*i+1, x.Mod(y), r)
-               int_eq(4*i+2, qq, q)
-               int_eq(4*i+3, rr, r)
-       }
-}
-
-
-func TestNatMod(t *testing.T) {
-       tester = t
-       test_msg = "NatModA"
-       for i := uint(0); ; i++ {
-               d := nat_one.Shl(i)
-               if d.Cmp(c) < 0 {
-                       nat_eq(i, c.Add(d).Mod(c), d)
-               } else {
-                       nat_eq(i, c.Add(d).Div(c), nat_two)
-                       nat_eq(i, c.Add(d).Mod(c), d.Sub(c))
-                       break
-               }
-       }
-}
-
-
-func TestNatShift(t *testing.T) {
-       tester = t
-       test_msg = "NatShift1L"
-       test(0, b.Shl(0).Cmp(b) == 0)
-       test(1, c.Shl(1).Cmp(c) > 0)
-
-       test_msg = "NatShift1R"
-       test(3, b.Shr(0).Cmp(b) == 0)
-       test(4, c.Shr(1).Cmp(c) < 0)
-
-       test_msg = "NatShift2"
-       for i := uint(0); i < 100; i++ {
-               test(i, c.Shl(i).Shr(i).Cmp(c) == 0)
-       }
-
-       test_msg = "NatShift3L"
-       {
-               const m = 3
-               p := b
-               f := Nat(1 << m)
-               for i := uint(0); i < 100; i++ {
-                       nat_eq(i, b.Shl(i*m), p)
-                       p = mul(p, f)
-               }
-       }
-
-       test_msg = "NatShift3R"
-       {
-               p := c
-               for i := uint(0); !p.IsZero(); i++ {
-                       nat_eq(i, c.Shr(i), p)
-                       p = p.Shr(1)
-               }
-       }
-}
-
-
-func TestIntShift(t *testing.T) {
-       tester = t
-       test_msg = "IntShift1L"
-       test(0, ip.Shl(0).Cmp(ip) == 0)
-       test(1, ip.Shl(1).Cmp(ip) > 0)
-
-       test_msg = "IntShift1R"
-       test(0, ip.Shr(0).Cmp(ip) == 0)
-       test(1, ip.Shr(1).Cmp(ip) < 0)
-
-       test_msg = "IntShift2"
-       for i := uint(0); i < 100; i++ {
-               test(i, ip.Shl(i).Shr(i).Cmp(ip) == 0)
-       }
-
-       test_msg = "IntShift3L"
-       {
-               const m = 3
-               p := ip
-               f := Int(1 << m)
-               for i := uint(0); i < 100; i++ {
-                       int_eq(i, ip.Shl(i*m), p)
-                       p = p.Mul(f)
-               }
-       }
-
-       test_msg = "IntShift3R"
-       {
-               p := ip
-               for i := uint(0); p.IsPos(); i++ {
-                       int_eq(i, ip.Shr(i), p)
-                       p = p.Shr(1)
-               }
-       }
-
-       test_msg = "IntShift4R"
-       int_eq(0, Int(-43).Shr(1), Int(-43>>1))
-       int_eq(0, Int(-1024).Shr(100), Int(-1))
-       int_eq(1, ip.Neg().Shr(10), ip.Neg().Div(Int(1).Shl(10)))
-}
-
-
-func TestNatBitOps(t *testing.T) {
-       tester = t
-
-       x := uint64(0xf08e6f56bd8c3941)
-       y := uint64(0x3984ef67834bc)
-
-       bx := Nat(x)
-       by := Nat(y)
-
-       test_msg = "NatAnd"
-       bz := Nat(x & y)
-       for i := uint(0); i < 100; i++ {
-               nat_eq(i, bx.Shl(i).And(by.Shl(i)), bz.Shl(i))
-       }
-
-       test_msg = "NatAndNot"
-       bz = Nat(x &^ y)
-       for i := uint(0); i < 100; i++ {
-               nat_eq(i, bx.Shl(i).AndNot(by.Shl(i)), bz.Shl(i))
-       }
-
-       test_msg = "NatOr"
-       bz = Nat(x | y)
-       for i := uint(0); i < 100; i++ {
-               nat_eq(i, bx.Shl(i).Or(by.Shl(i)), bz.Shl(i))
-       }
-
-       test_msg = "NatXor"
-       bz = Nat(x ^ y)
-       for i := uint(0); i < 100; i++ {
-               nat_eq(i, bx.Shl(i).Xor(by.Shl(i)), bz.Shl(i))
-       }
-}
-
-
-func TestIntBitOps1(t *testing.T) {
-       tester = t
-       test_msg = "IntBitOps1"
-       type T struct {
-               x, y int64
-       }
-       a := []T{
-               T{+7, +3},
-               T{+7, -3},
-               T{-7, +3},
-               T{-7, -3},
-       }
-       for i := uint(0); i < uint(len(a)); i++ {
-               e := &a[i]
-               int_eq(4*i+0, Int(e.x).And(Int(e.y)), Int(e.x&e.y))
-               int_eq(4*i+1, Int(e.x).AndNot(Int(e.y)), Int(e.x&^e.y))
-               int_eq(4*i+2, Int(e.x).Or(Int(e.y)), Int(e.x|e.y))
-               int_eq(4*i+3, Int(e.x).Xor(Int(e.y)), Int(e.x^e.y))
-       }
-}
-
-
-func TestIntBitOps2(t *testing.T) {
-       tester = t
-
-       test_msg = "IntNot"
-       int_eq(0, Int(-2).Not(), Int(1))
-       int_eq(0, Int(-1).Not(), Int(0))
-       int_eq(0, Int(0).Not(), Int(-1))
-       int_eq(0, Int(1).Not(), Int(-2))
-       int_eq(0, Int(2).Not(), Int(-3))
-
-       test_msg = "IntAnd"
-       for x := int64(-15); x < 5; x++ {
-               bx := Int(x)
-               for y := int64(-5); y < 15; y++ {
-                       by := Int(y)
-                       for i := uint(50); i < 70; i++ { // shift across 64bit boundary
-                               int_eq(i, bx.Shl(i).And(by.Shl(i)), Int(x&y).Shl(i))
-                       }
-               }
-       }
-
-       test_msg = "IntAndNot"
-       for x := int64(-15); x < 5; x++ {
-               bx := Int(x)
-               for y := int64(-5); y < 15; y++ {
-                       by := Int(y)
-                       for i := uint(50); i < 70; i++ { // shift across 64bit boundary
-                               int_eq(2*i+0, bx.Shl(i).AndNot(by.Shl(i)), Int(x&^y).Shl(i))
-                               int_eq(2*i+1, bx.Shl(i).And(by.Shl(i).Not()), Int(x&^y).Shl(i))
-                       }
-               }
-       }
-
-       test_msg = "IntOr"
-       for x := int64(-15); x < 5; x++ {
-               bx := Int(x)
-               for y := int64(-5); y < 15; y++ {
-                       by := Int(y)
-                       for i := uint(50); i < 70; i++ { // shift across 64bit boundary
-                               int_eq(i, bx.Shl(i).Or(by.Shl(i)), Int(x|y).Shl(i))
-                       }
-               }
-       }
-
-       test_msg = "IntXor"
-       for x := int64(-15); x < 5; x++ {
-               bx := Int(x)
-               for y := int64(-5); y < 15; y++ {
-                       by := Int(y)
-                       for i := uint(50); i < 70; i++ { // shift across 64bit boundary
-                               int_eq(i, bx.Shl(i).Xor(by.Shl(i)), Int(x^y).Shl(i))
-                       }
-               }
-       }
-}
-
-
-func TestNatCmp(t *testing.T) {
-       tester = t
-       test_msg = "NatCmp"
-       test(0, a.Cmp(a) == 0)
-       test(1, a.Cmp(b) < 0)
-       test(2, b.Cmp(a) > 0)
-       test(3, a.Cmp(c) < 0)
-       d := c.Add(b)
-       test(4, c.Cmp(d) < 0)
-       test(5, d.Cmp(c) > 0)
-}
-
-
-func TestNatLog2(t *testing.T) {
-       tester = t
-       test_msg = "NatLog2A"
-       test(0, nat_one.Log2() == 0)
-       test(1, nat_two.Log2() == 1)
-       test(2, Nat(3).Log2() == 1)
-       test(3, Nat(4).Log2() == 2)
-
-       test_msg = "NatLog2B"
-       for i := uint(0); i < 100; i++ {
-               test(i, nat_one.Shl(i).Log2() == i)
-       }
-}
-
-
-func TestNatGcd(t *testing.T) {
-       tester = t
-       test_msg = "NatGcdA"
-       f := Nat(99991)
-       nat_eq(0, b.Mul(f).Gcd(c.Mul(f)), MulRange(1, 20).Mul(f))
-}
-
-
-func TestNatPow(t *testing.T) {
-       tester = t
-       test_msg = "NatPowA"
-       nat_eq(0, nat_two.Pow(0), nat_one)
-
-       test_msg = "NatPowB"
-       for i := uint(0); i < 100; i++ {
-               nat_eq(i, nat_two.Pow(i), nat_one.Shl(i))
-       }
-}
-
-
-func TestNatPop(t *testing.T) {
-       tester = t
-       test_msg = "NatPopA"
-       test(0, nat_zero.Pop() == 0)
-       test(1, nat_one.Pop() == 1)
-       test(2, Nat(10).Pop() == 2)
-       test(3, Nat(30).Pop() == 4)
-       test(4, Nat(0x1248f).Shl(33).Pop() == 8)
-
-       test_msg = "NatPopB"
-       for i := uint(0); i < 100; i++ {
-               test(i, nat_one.Shl(i).Sub(nat_one).Pop() == i)
-       }
-}
-
-
-func TestIssue571(t *testing.T) {
-       const min_float = "4.940656458412465441765687928682213723651e-324"
-       RatFromString(min_float, 10) // this must not crash
-}
diff --git a/src/pkg/exp/bignum/integer.go b/src/pkg/exp/bignum/integer.go
deleted file mode 100644 (file)
index a8d2682..0000000
+++ /dev/null
@@ -1,520 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Integer numbers
-//
-// Integers are normalized if the mantissa is normalized and the sign is
-// false for mant == 0. Use MakeInt to create normalized Integers.
-
-package bignum
-
-import (
-       "fmt"
-)
-
-// TODO(gri) Complete the set of in-place operations.
-
-// Integer represents a signed integer value of arbitrary precision.
-//
-type Integer struct {
-       sign bool
-       mant Natural
-}
-
-
-// MakeInt makes an integer given a sign and a mantissa.
-// The number is positive (>= 0) if sign is false or the
-// mantissa is zero; it is negative otherwise.
-//
-func MakeInt(sign bool, mant Natural) *Integer {
-       if mant.IsZero() {
-               sign = false // normalize
-       }
-       return &Integer{sign, mant}
-}
-
-
-// Int creates a small integer with value x.
-//
-func Int(x int64) *Integer {
-       var ux uint64
-       if x < 0 {
-               // For the most negative x, -x == x, and
-               // the bit pattern has the correct value.
-               ux = uint64(-x)
-       } else {
-               ux = uint64(x)
-       }
-       return MakeInt(x < 0, Nat(ux))
-}
-
-
-// Value returns the value of x, if x fits into an int64;
-// otherwise the result is undefined.
-//
-func (x *Integer) Value() int64 {
-       z := int64(x.mant.Value())
-       if x.sign {
-               z = -z
-       }
-       return z
-}
-
-
-// Abs returns the absolute value of x.
-//
-func (x *Integer) Abs() Natural { return x.mant }
-
-
-// Predicates
-
-// IsEven returns true iff x is divisible by 2.
-//
-func (x *Integer) IsEven() bool { return x.mant.IsEven() }
-
-
-// IsOdd returns true iff x is not divisible by 2.
-//
-func (x *Integer) IsOdd() bool { return x.mant.IsOdd() }
-
-
-// IsZero returns true iff x == 0.
-//
-func (x *Integer) IsZero() bool { return x.mant.IsZero() }
-
-
-// IsNeg returns true iff x < 0.
-//
-func (x *Integer) IsNeg() bool { return x.sign && !x.mant.IsZero() }
-
-
-// IsPos returns true iff x >= 0.
-//
-func (x *Integer) IsPos() bool { return !x.sign && !x.mant.IsZero() }
-
-
-// Operations
-
-// Neg returns the negated value of x.
-//
-func (x *Integer) Neg() *Integer { return MakeInt(!x.sign, x.mant) }
-
-
-// Iadd sets z to the sum x + y.
-// z must exist and may be x or y.
-//
-func Iadd(z, x, y *Integer) {
-       if x.sign == y.sign {
-               // x + y == x + y
-               // (-x) + (-y) == -(x + y)
-               z.sign = x.sign
-               Nadd(&z.mant, x.mant, y.mant)
-       } else {
-               // x + (-y) == x - y == -(y - x)
-               // (-x) + y == y - x == -(x - y)
-               if x.mant.Cmp(y.mant) >= 0 {
-                       z.sign = x.sign
-                       Nsub(&z.mant, x.mant, y.mant)
-               } else {
-                       z.sign = !x.sign
-                       Nsub(&z.mant, y.mant, x.mant)
-               }
-       }
-}
-
-
-// Add returns the sum x + y.
-//
-func (x *Integer) Add(y *Integer) *Integer {
-       var z Integer
-       Iadd(&z, x, y)
-       return &z
-}
-
-
-func Isub(z, x, y *Integer) {
-       if x.sign != y.sign {
-               // x - (-y) == x + y
-               // (-x) - y == -(x + y)
-               z.sign = x.sign
-               Nadd(&z.mant, x.mant, y.mant)
-       } else {
-               // x - y == x - y == -(y - x)
-               // (-x) - (-y) == y - x == -(x - y)
-               if x.mant.Cmp(y.mant) >= 0 {
-                       z.sign = x.sign
-                       Nsub(&z.mant, x.mant, y.mant)
-               } else {
-                       z.sign = !x.sign
-                       Nsub(&z.mant, y.mant, x.mant)
-               }
-       }
-}
-
-
-// Sub returns the difference x - y.
-//
-func (x *Integer) Sub(y *Integer) *Integer {
-       var z Integer
-       Isub(&z, x, y)
-       return &z
-}
-
-
-// Nscale sets *z to the scaled value (*z) * d.
-//
-func Iscale(z *Integer, d int64) {
-       f := uint64(d)
-       if d < 0 {
-               f = uint64(-d)
-       }
-       z.sign = z.sign != (d < 0)
-       Nscale(&z.mant, f)
-}
-
-
-// Mul1 returns the product x * d.
-//
-func (x *Integer) Mul1(d int64) *Integer {
-       f := uint64(d)
-       if d < 0 {
-               f = uint64(-d)
-       }
-       return MakeInt(x.sign != (d < 0), x.mant.Mul1(f))
-}
-
-
-// Mul returns the product x * y.
-//
-func (x *Integer) Mul(y *Integer) *Integer {
-       // x * y == x * y
-       // x * (-y) == -(x * y)
-       // (-x) * y == -(x * y)
-       // (-x) * (-y) == x * y
-       return MakeInt(x.sign != y.sign, x.mant.Mul(y.mant))
-}
-
-
-// MulNat returns the product x * y, where y is a (unsigned) natural number.
-//
-func (x *Integer) MulNat(y Natural) *Integer {
-       // x * y == x * y
-       // (-x) * y == -(x * y)
-       return MakeInt(x.sign, x.mant.Mul(y))
-}
-
-
-// Quo returns the quotient q = x / y for y != 0.
-// If y == 0, a division-by-zero run-time error occurs.
-//
-// Quo and Rem implement T-division and modulus (like C99):
-//
-//   q = x.Quo(y) = trunc(x/y)  (truncation towards zero)
-//   r = x.Rem(y) = x - y*q
-//
-// (Daan Leijen, ``Division and Modulus for Computer Scientists''.)
-//
-func (x *Integer) Quo(y *Integer) *Integer {
-       // x / y == x / y
-       // x / (-y) == -(x / y)
-       // (-x) / y == -(x / y)
-       // (-x) / (-y) == x / y
-       return MakeInt(x.sign != y.sign, x.mant.Div(y.mant))
-}
-
-
-// Rem returns the remainder r of the division x / y for y != 0,
-// with r = x - y*x.Quo(y). Unless r is zero, its sign corresponds
-// to the sign of x.
-// If y == 0, a division-by-zero run-time error occurs.
-//
-func (x *Integer) Rem(y *Integer) *Integer {
-       // x % y == x % y
-       // x % (-y) == x % y
-       // (-x) % y == -(x % y)
-       // (-x) % (-y) == -(x % y)
-       return MakeInt(x.sign, x.mant.Mod(y.mant))
-}
-
-
-// QuoRem returns the pair (x.Quo(y), x.Rem(y)) for y != 0.
-// If y == 0, a division-by-zero run-time error occurs.
-//
-func (x *Integer) QuoRem(y *Integer) (*Integer, *Integer) {
-       q, r := x.mant.DivMod(y.mant)
-       return MakeInt(x.sign != y.sign, q), MakeInt(x.sign, r)
-}
-
-
-// Div returns the quotient q = x / y for y != 0.
-// If y == 0, a division-by-zero run-time error occurs.
-//
-// Div and Mod implement Euclidian division and modulus:
-//
-//   q = x.Div(y)
-//   r = x.Mod(y) with: 0 <= r < |q| and: x = y*q + r
-//
-// (Raymond T. Boute, ``The Euclidian definition of the functions
-// div and mod''. ACM Transactions on Programming Languages and
-// Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992.
-// ACM press.)
-//
-func (x *Integer) Div(y *Integer) *Integer {
-       q, r := x.QuoRem(y)
-       if r.IsNeg() {
-               if y.IsPos() {
-                       q = q.Sub(Int(1))
-               } else {
-                       q = q.Add(Int(1))
-               }
-       }
-       return q
-}
-
-
-// Mod returns the modulus r of the division x / y for y != 0,
-// with r = x - y*x.Div(y). r is always positive.
-// If y == 0, a division-by-zero run-time error occurs.
-//
-func (x *Integer) Mod(y *Integer) *Integer {
-       r := x.Rem(y)
-       if r.IsNeg() {
-               if y.IsPos() {
-                       r = r.Add(y)
-               } else {
-                       r = r.Sub(y)
-               }
-       }
-       return r
-}
-
-
-// DivMod returns the pair (x.Div(y), x.Mod(y)).
-//
-func (x *Integer) DivMod(y *Integer) (*Integer, *Integer) {
-       q, r := x.QuoRem(y)
-       if r.IsNeg() {
-               if y.IsPos() {
-                       q = q.Sub(Int(1))
-                       r = r.Add(y)
-               } else {
-                       q = q.Add(Int(1))
-                       r = r.Sub(y)
-               }
-       }
-       return q, r
-}
-
-
-// Shl implements ``shift left'' x << s. It returns x * 2^s.
-//
-func (x *Integer) Shl(s uint) *Integer { return MakeInt(x.sign, x.mant.Shl(s)) }
-
-
-// The bitwise operations on integers are defined on the 2's-complement
-// representation of integers. From
-//
-//   -x == ^x + 1  (1)  2's complement representation
-//
-// follows:
-//
-//   -(x) == ^(x) + 1
-//   -(-x) == ^(-x) + 1
-//   x-1 == ^(-x)
-//   ^(x-1) == -x  (2)
-//
-// Using (1) and (2), operations on negative integers of the form -x are
-// converted to operations on negated positive integers of the form ~(x-1).
-
-
-// Shr implements ``shift right'' x >> s. It returns x / 2^s.
-//
-func (x *Integer) Shr(s uint) *Integer {
-       if x.sign {
-               // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1)
-               return MakeInt(true, x.mant.Sub(Nat(1)).Shr(s).Add(Nat(1)))
-       }
-
-       return MakeInt(false, x.mant.Shr(s))
-}
-
-
-// Not returns the ``bitwise not'' ^x for the 2's-complement representation of x.
-func (x *Integer) Not() *Integer {
-       if x.sign {
-               // ^(-x) == ^(^(x-1)) == x-1
-               return MakeInt(false, x.mant.Sub(Nat(1)))
-       }
-
-       // ^x == -x-1 == -(x+1)
-       return MakeInt(true, x.mant.Add(Nat(1)))
-}
-
-
-// And returns the ``bitwise and'' x & y for the 2's-complement representation of x and y.
-//
-func (x *Integer) And(y *Integer) *Integer {
-       if x.sign == y.sign {
-               if x.sign {
-                       // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1)
-                       return MakeInt(true, x.mant.Sub(Nat(1)).Or(y.mant.Sub(Nat(1))).Add(Nat(1)))
-               }
-
-               // x & y == x & y
-               return MakeInt(false, x.mant.And(y.mant))
-       }
-
-       // x.sign != y.sign
-       if x.sign {
-               x, y = y, x // & is symmetric
-       }
-
-       // x & (-y) == x & ^(y-1) == x &^ (y-1)
-       return MakeInt(false, x.mant.AndNot(y.mant.Sub(Nat(1))))
-}
-
-
-// AndNot returns the ``bitwise clear'' x &^ y for the 2's-complement representation of x and y.
-//
-func (x *Integer) AndNot(y *Integer) *Integer {
-       if x.sign == y.sign {
-               if x.sign {
-                       // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1)
-                       return MakeInt(false, y.mant.Sub(Nat(1)).AndNot(x.mant.Sub(Nat(1))))
-               }
-
-               // x &^ y == x &^ y
-               return MakeInt(false, x.mant.AndNot(y.mant))
-       }
-
-       if x.sign {
-               // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1)
-               return MakeInt(true, x.mant.Sub(Nat(1)).Or(y.mant).Add(Nat(1)))
-       }
-
-       // x &^ (-y) == x &^ ^(y-1) == x & (y-1)
-       return MakeInt(false, x.mant.And(y.mant.Sub(Nat(1))))
-}
-
-
-// Or returns the ``bitwise or'' x | y for the 2's-complement representation of x and y.
-//
-func (x *Integer) Or(y *Integer) *Integer {
-       if x.sign == y.sign {
-               if x.sign {
-                       // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1)
-                       return MakeInt(true, x.mant.Sub(Nat(1)).And(y.mant.Sub(Nat(1))).Add(Nat(1)))
-               }
-
-               // x | y == x | y
-               return MakeInt(false, x.mant.Or(y.mant))
-       }
-
-       // x.sign != y.sign
-       if x.sign {
-               x, y = y, x // | or symmetric
-       }
-
-       // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1)
-       return MakeInt(true, y.mant.Sub(Nat(1)).AndNot(x.mant).Add(Nat(1)))
-}
-
-
-// Xor returns the ``bitwise xor'' x | y for the 2's-complement representation of x and y.
-//
-func (x *Integer) Xor(y *Integer) *Integer {
-       if x.sign == y.sign {
-               if x.sign {
-                       // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1)
-                       return MakeInt(false, x.mant.Sub(Nat(1)).Xor(y.mant.Sub(Nat(1))))
-               }
-
-               // x ^ y == x ^ y
-               return MakeInt(false, x.mant.Xor(y.mant))
-       }
-
-       // x.sign != y.sign
-       if x.sign {
-               x, y = y, x // ^ is symmetric
-       }
-
-       // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1)
-       return MakeInt(true, x.mant.Xor(y.mant.Sub(Nat(1))).Add(Nat(1)))
-}
-
-
-// Cmp compares x and y. The result is an int value that is
-//
-//   <  0 if x <  y
-//   == 0 if x == y
-//   >  0 if x >  y
-//
-func (x *Integer) Cmp(y *Integer) int {
-       // x cmp y == x cmp y
-       // x cmp (-y) == x
-       // (-x) cmp y == y
-       // (-x) cmp (-y) == -(x cmp y)
-       var r int
-       switch {
-       case x.sign == y.sign:
-               r = x.mant.Cmp(y.mant)
-               if x.sign {
-                       r = -r
-               }
-       case x.sign:
-               r = -1
-       case y.sign:
-               r = 1
-       }
-       return r
-}
-
-
-// ToString converts x to a string for a given base, with 2 <= base <= 16.
-//
-func (x *Integer) ToString(base uint) string {
-       if x.mant.IsZero() {
-               return "0"
-       }
-       var s string
-       if x.sign {
-               s = "-"
-       }
-       return s + x.mant.ToString(base)
-}
-
-
-// String converts x to its decimal string representation.
-// x.String() is the same as x.ToString(10).
-//
-func (x *Integer) String() string { return x.ToString(10) }
-
-
-// Format is a support routine for fmt.Formatter. It accepts
-// the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal).
-//
-func (x *Integer) Format(h fmt.State, c int) { fmt.Fprintf(h, "%s", x.ToString(fmtbase(c))) }
-
-
-// IntFromString returns the integer corresponding to the
-// longest possible prefix of s representing an integer in a
-// given conversion base, the actual conversion base used, and
-// the prefix length. The syntax of integers follows the syntax
-// of signed integer literals in Go.
-//
-// If the base argument is 0, the string prefix determines the actual
-// conversion base. A prefix of ``0x'' or ``0X'' selects base 16; the
-// ``0'' prefix selects base 8. Otherwise the selected base is 10.
-//
-func IntFromString(s string, base uint) (*Integer, uint, int) {
-       // skip sign, if any
-       i0 := 0
-       if len(s) > 0 && (s[0] == '-' || s[0] == '+') {
-               i0 = 1
-       }
-
-       mant, base, slen := NatFromString(s[i0:], base)
-
-       return MakeInt(i0 > 0 && s[0] == '-', mant), base, i0 + slen
-}
diff --git a/src/pkg/exp/bignum/nrdiv_test.go b/src/pkg/exp/bignum/nrdiv_test.go
deleted file mode 100644 (file)
index 725b1ac..0000000
+++ /dev/null
@@ -1,188 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// This file implements Newton-Raphson division and uses
-// it as an additional test case for bignum.
-//
-// Division of x/y is achieved by computing r = 1/y to
-// obtain the quotient q = x*r = x*(1/y) = x/y. The
-// reciprocal r is the solution for f(x) = 1/x - y and
-// the solution is approximated through iteration. The
-// iteration does not require division.
-
-package bignum
-
-import "testing"
-
-
-// An fpNat is a Natural scaled by a power of two
-// (an unsigned floating point representation). The
-// value of an fpNat x is x.m * 2^x.e .
-//
-type fpNat struct {
-       m Natural
-       e int
-}
-
-
-// sub computes x - y.
-func (x fpNat) sub(y fpNat) fpNat {
-       switch d := x.e - y.e; {
-       case d < 0:
-               return fpNat{x.m.Sub(y.m.Shl(uint(-d))), x.e}
-       case d > 0:
-               return fpNat{x.m.Shl(uint(d)).Sub(y.m), y.e}
-       }
-       return fpNat{x.m.Sub(y.m), x.e}
-}
-
-
-// mul2 computes x*2.
-func (x fpNat) mul2() fpNat { return fpNat{x.m, x.e + 1} }
-
-
-// mul computes x*y.
-func (x fpNat) mul(y fpNat) fpNat { return fpNat{x.m.Mul(y.m), x.e + y.e} }
-
-
-// mant computes the (possibly truncated) Natural representation
-// of an fpNat x.
-//
-func (x fpNat) mant() Natural {
-       switch {
-       case x.e > 0:
-               return x.m.Shl(uint(x.e))
-       case x.e < 0:
-               return x.m.Shr(uint(-x.e))
-       }
-       return x.m
-}
-
-
-// nrDivEst computes an estimate of the quotient q = x0/y0 and returns q.
-// q may be too small (usually by 1).
-//
-func nrDivEst(x0, y0 Natural) Natural {
-       if y0.IsZero() {
-               panic("division by zero")
-               return nil
-       }
-       // y0 > 0
-
-       if y0.Cmp(Nat(1)) == 0 {
-               return x0
-       }
-       // y0 > 1
-
-       switch d := x0.Cmp(y0); {
-       case d < 0:
-               return Nat(0)
-       case d == 0:
-               return Nat(1)
-       }
-       // x0 > y0 > 1
-
-       // Determine maximum result length.
-       maxLen := int(x0.Log2() - y0.Log2() + 1)
-
-       // In the following, each number x is represented
-       // as a mantissa x.m and an exponent x.e such that
-       // x = xm * 2^x.e.
-       x := fpNat{x0, 0}
-       y := fpNat{y0, 0}
-
-       // Determine a scale factor f = 2^e such that
-       // 0.5 <= y/f == y*(2^-e) < 1.0
-       // and scale y accordingly.
-       e := int(y.m.Log2()) + 1
-       y.e -= e
-
-       // t1
-       var c = 2.9142
-       const n = 14
-       t1 := fpNat{Nat(uint64(c * (1 << n))), -n}
-
-       // Compute initial value r0 for the reciprocal of y/f.
-       // r0 = t1 - 2*y
-       r := t1.sub(y.mul2())
-       two := fpNat{Nat(2), 0}
-
-       // Newton-Raphson iteration
-       p := Nat(0)
-       for i := 0; ; i++ {
-               // check if we are done
-               // TODO: Need to come up with a better test here
-               //       as it will reduce computation time significantly.
-               // q = x*r/f
-               q := x.mul(r)
-               q.e -= e
-               res := q.mant()
-               if res.Cmp(p) == 0 {
-                       return res
-               }
-               p = res
-
-               // r' = r*(2 - y*r)
-               r = r.mul(two.sub(y.mul(r)))
-
-               // reduce mantissa size
-               // TODO: Find smaller bound as it will reduce
-               //       computation time massively.
-               d := int(r.m.Log2()+1) - maxLen
-               if d > 0 {
-                       r = fpNat{r.m.Shr(uint(d)), r.e + d}
-               }
-       }
-
-       panic("unreachable")
-       return nil
-}
-
-
-func nrdiv(x, y Natural) (q, r Natural) {
-       q = nrDivEst(x, y)
-       r = x.Sub(y.Mul(q))
-       // if r is too large, correct q and r
-       // (usually one iteration)
-       for r.Cmp(y) >= 0 {
-               q = q.Add(Nat(1))
-               r = r.Sub(y)
-       }
-       return
-}
-
-
-func div(t *testing.T, x, y Natural) {
-       q, r := nrdiv(x, y)
-       qx, rx := x.DivMod(y)
-       if q.Cmp(qx) != 0 {
-               t.Errorf("x = %s, y = %s, got q = %s, want q = %s", x, y, q, qx)
-       }
-       if r.Cmp(rx) != 0 {
-               t.Errorf("x = %s, y = %s, got r = %s, want r = %s", x, y, r, rx)
-       }
-}
-
-
-func idiv(t *testing.T, x0, y0 uint64) { div(t, Nat(x0), Nat(y0)) }
-
-
-func TestNRDiv(t *testing.T) {
-       idiv(t, 17, 18)
-       idiv(t, 17, 17)
-       idiv(t, 17, 1)
-       idiv(t, 17, 16)
-       idiv(t, 17, 10)
-       idiv(t, 17, 9)
-       idiv(t, 17, 8)
-       idiv(t, 17, 5)
-       idiv(t, 17, 3)
-       idiv(t, 1025, 512)
-       idiv(t, 7489595, 2)
-       idiv(t, 5404679459, 78495)
-       idiv(t, 7484890589595, 7484890589594)
-       div(t, Fact(100), Fact(91))
-       div(t, Fact(1000), Fact(991))
-       //div(t, Fact(10000), Fact(9991));  // takes too long - disabled for now
-}
diff --git a/src/pkg/exp/bignum/rational.go b/src/pkg/exp/bignum/rational.go
deleted file mode 100644 (file)
index 378585e..0000000
+++ /dev/null
@@ -1,205 +0,0 @@
-// Copyright 2009 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// Rational numbers
-
-package bignum
-
-import "fmt"
-
-
-// Rational represents a quotient a/b of arbitrary precision.
-//
-type Rational struct {
-       a *Integer // numerator
-       b Natural  // denominator
-}
-
-
-// MakeRat makes a rational number given a numerator a and a denominator b.
-//
-func MakeRat(a *Integer, b Natural) *Rational {
-       f := a.mant.Gcd(b) // f > 0
-       if f.Cmp(Nat(1)) != 0 {
-               a = MakeInt(a.sign, a.mant.Div(f))
-               b = b.Div(f)
-       }
-       return &Rational{a, b}
-}
-
-
-// Rat creates a small rational number with value a0/b0.
-//
-func Rat(a0 int64, b0 int64) *Rational {
-       a, b := Int(a0), Int(b0)
-       if b.sign {
-               a = a.Neg()
-       }
-       return MakeRat(a, b.mant)
-}
-
-
-// Value returns the numerator and denominator of x.
-//
-func (x *Rational) Value() (numerator *Integer, denominator Natural) {
-       return x.a, x.b
-}
-
-
-// Predicates
-
-// IsZero returns true iff x == 0.
-//
-func (x *Rational) IsZero() bool { return x.a.IsZero() }
-
-
-// IsNeg returns true iff x < 0.
-//
-func (x *Rational) IsNeg() bool { return x.a.IsNeg() }
-
-
-// IsPos returns true iff x > 0.
-//
-func (x *Rational) IsPos() bool { return x.a.IsPos() }
-
-
-// IsInt returns true iff x can be written with a denominator 1
-// in the form x == x'/1; i.e., if x is an integer value.
-//
-func (x *Rational) IsInt() bool { return x.b.Cmp(Nat(1)) == 0 }
-
-
-// Operations
-
-// Neg returns the negated value of x.
-//
-func (x *Rational) Neg() *Rational { return MakeRat(x.a.Neg(), x.b) }
-
-
-// Add returns the sum x + y.
-//
-func (x *Rational) Add(y *Rational) *Rational {
-       return MakeRat((x.a.MulNat(y.b)).Add(y.a.MulNat(x.b)), x.b.Mul(y.b))
-}
-
-
-// Sub returns the difference x - y.
-//
-func (x *Rational) Sub(y *Rational) *Rational {
-       return MakeRat((x.a.MulNat(y.b)).Sub(y.a.MulNat(x.b)), x.b.Mul(y.b))
-}
-
-
-// Mul returns the product x * y.
-//
-func (x *Rational) Mul(y *Rational) *Rational { return MakeRat(x.a.Mul(y.a), x.b.Mul(y.b)) }
-
-
-// Quo returns the quotient x / y for y != 0.
-// If y == 0, a division-by-zero run-time error occurs.
-//
-func (x *Rational) Quo(y *Rational) *Rational {
-       a := x.a.MulNat(y.b)
-       b := y.a.MulNat(x.b)
-       if b.IsNeg() {
-               a = a.Neg()
-       }
-       return MakeRat(a, b.mant)
-}
-
-
-// Cmp compares x and y. The result is an int value
-//
-//   <  0 if x <  y
-//   == 0 if x == y
-//   >  0 if x >  y
-//
-func (x *Rational) Cmp(y *Rational) int { return (x.a.MulNat(y.b)).Cmp(y.a.MulNat(x.b)) }
-
-
-// ToString converts x to a string for a given base, with 2 <= base <= 16.
-// The string representation is of the form "n" if x is an integer; otherwise
-// it is of form "n/d".
-//
-func (x *Rational) ToString(base uint) string {
-       s := x.a.ToString(base)
-       if !x.IsInt() {
-               s += "/" + x.b.ToString(base)
-       }
-       return s
-}
-
-
-// String converts x to its decimal string representation.
-// x.String() is the same as x.ToString(10).
-//
-func (x *Rational) String() string { return x.ToString(10) }
-
-
-// Format is a support routine for fmt.Formatter. It accepts
-// the formats 'b' (binary), 'o' (octal), and 'x' (hexadecimal).
-//
-func (x *Rational) Format(h fmt.State, c int) { fmt.Fprintf(h, "%s", x.ToString(fmtbase(c))) }
-
-
-// RatFromString returns the rational number corresponding to the
-// longest possible prefix of s representing a rational number in a
-// given conversion base, the actual conversion base used, and the
-// prefix length. The syntax of a rational number is:
-//
-//     rational = mantissa [exponent] .
-//     mantissa = integer ('/' natural | '.' natural) .
-//     exponent = ('e'|'E') integer .
-//
-// If the base argument is 0, the string prefix determines the actual
-// conversion base for the mantissa. A prefix of ``0x'' or ``0X'' selects
-// base 16; the ``0'' prefix selects base 8. Otherwise the selected base is 10.
-// If the mantissa is represented via a division, both the numerator and
-// denominator may have different base prefixes; in that case the base of
-// of the numerator is returned. If the mantissa contains a decimal point,
-// the base for the fractional part is the same as for the part before the
-// decimal point and the fractional part does not accept a base prefix.
-// The base for the exponent is always 10.
-//
-func RatFromString(s string, base uint) (*Rational, uint, int) {
-       // read numerator
-       a, abase, alen := IntFromString(s, base)
-       b := Nat(1)
-
-       // read denominator or fraction, if any
-       var blen int
-       if alen < len(s) {
-               ch := s[alen]
-               if ch == '/' {
-                       alen++
-                       b, base, blen = NatFromString(s[alen:], base)
-               } else if ch == '.' {
-                       alen++
-                       b, base, blen = NatFromString(s[alen:], abase)
-                       assert(base == abase)
-                       f := Nat(uint64(base)).Pow(uint(blen))
-                       a = MakeInt(a.sign, a.mant.Mul(f).Add(b))
-                       b = f
-               }
-       }
-
-       // read exponent, if any
-       rlen := alen + blen
-       if rlen < len(s) {
-               ch := s[rlen]
-               if ch == 'e' || ch == 'E' {
-                       rlen++
-                       e, _, elen := IntFromString(s[rlen:], 10)
-                       rlen += elen
-                       m := Nat(10).Pow(uint(e.mant.Value()))
-                       if e.sign {
-                               b = b.Mul(m)
-                       } else {
-                               a = a.MulNat(m)
-                       }
-               }
-       }
-
-       return MakeRat(a, b), base, rlen
-}