]> Cypherpunks repositories - gostls13.git/commitdiff
crypto/openpgp/packet: add public key support
authorAdam Langley <agl@golang.org>
Fri, 4 Feb 2011 14:00:17 +0000 (09:00 -0500)
committerAdam Langley <agl@golang.org>
Fri, 4 Feb 2011 14:00:17 +0000 (09:00 -0500)
Note that DSA public key support is nascent and the verification
functions clearly don't support it yet. I'm intending to get RSA keys
working first.

R=bradfitzgo
CC=golang-dev
https://golang.org/cl/3973054

src/pkg/crypto/openpgp/packet/public_key.go [new file with mode: 0644]
src/pkg/crypto/openpgp/packet/public_key_test.go [new file with mode: 0644]

diff --git a/src/pkg/crypto/openpgp/packet/public_key.go b/src/pkg/crypto/openpgp/packet/public_key.go
new file mode 100644 (file)
index 0000000..4a2ed0a
--- /dev/null
@@ -0,0 +1,260 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package packet
+
+import (
+       "big"
+       "crypto/dsa"
+       "crypto/openpgp/error"
+       "crypto/rsa"
+       "crypto/sha1"
+       "encoding/binary"
+       "hash"
+       "io"
+       "os"
+)
+
+// PublicKey represents an OpenPGP public key. See RFC 4880, section 5.5.2.
+type PublicKey struct {
+       CreationTime uint32 // seconds since the epoch
+       PubKeyAlgo   PublicKeyAlgorithm
+       PublicKey    interface{} // Either a *rsa.PublicKey or *dsa.PublicKey
+       Fingerprint  [20]byte
+       KeyId        uint64
+       IsSubKey     bool
+
+       n, e, p, q, g, y parsedMPI
+}
+
+func (pk *PublicKey) parse(r io.Reader) (err os.Error) {
+       // RFC 4880, section 5.5.2
+       var buf [6]byte
+       _, err = readFull(r, buf[:])
+       if err != nil {
+               return
+       }
+       if buf[0] != 4 {
+               return error.UnsupportedError("public key version")
+       }
+       pk.CreationTime = uint32(buf[1])<<24 | uint32(buf[2])<<16 | uint32(buf[3])<<8 | uint32(buf[4])
+       pk.PubKeyAlgo = PublicKeyAlgorithm(buf[5])
+       switch pk.PubKeyAlgo {
+       case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
+               err = pk.parseRSA(r)
+       case PubKeyAlgoDSA:
+               err = pk.parseDSA(r)
+       default:
+               err = error.UnsupportedError("public key type")
+       }
+       if err != nil {
+               return
+       }
+
+       // RFC 4880, section 12.2
+       fingerPrint := sha1.New()
+       pk.SerializeSignaturePrefix(fingerPrint)
+       pk.Serialize(fingerPrint)
+       copy(pk.Fingerprint[:], fingerPrint.Sum())
+       pk.KeyId = binary.BigEndian.Uint64(pk.Fingerprint[12:20])
+
+       return
+}
+
+// parseRSA parses RSA public key material from the given Reader. See RFC 4880,
+// section 5.5.2.
+func (pk *PublicKey) parseRSA(r io.Reader) (err os.Error) {
+       pk.n.bytes, pk.n.bitLength, err = readMPI(r)
+       if err != nil {
+               return
+       }
+       pk.e.bytes, pk.e.bitLength, err = readMPI(r)
+       if err != nil {
+               return
+       }
+
+       if len(pk.e.bytes) > 3 {
+               err = error.UnsupportedError("large public exponent")
+               return
+       }
+       rsa := &rsa.PublicKey{
+               N: new(big.Int).SetBytes(pk.n.bytes),
+               E: 0,
+       }
+       for i := 0; i < len(pk.e.bytes); i++ {
+               rsa.E <<= 8
+               rsa.E |= int(pk.e.bytes[i])
+       }
+       pk.PublicKey = rsa
+       return
+}
+
+// parseRSA parses DSA public key material from the given Reader. See RFC 4880,
+// section 5.5.2.
+func (pk *PublicKey) parseDSA(r io.Reader) (err os.Error) {
+       pk.p.bytes, pk.p.bitLength, err = readMPI(r)
+       if err != nil {
+               return
+       }
+       pk.q.bytes, pk.q.bitLength, err = readMPI(r)
+       if err != nil {
+               return
+       }
+       pk.g.bytes, pk.g.bitLength, err = readMPI(r)
+       if err != nil {
+               return
+       }
+       pk.y.bytes, pk.y.bitLength, err = readMPI(r)
+       if err != nil {
+               return
+       }
+
+       dsa := new(dsa.PublicKey)
+       dsa.P = new(big.Int).SetBytes(pk.p.bytes)
+       dsa.Q = new(big.Int).SetBytes(pk.q.bytes)
+       dsa.G = new(big.Int).SetBytes(pk.g.bytes)
+       dsa.Y = new(big.Int).SetBytes(pk.y.bytes)
+       pk.PublicKey = dsa
+       return
+}
+
+// SerializeSignaturePrefix writes the prefix for this public key to the given Writer.
+// The prefix is used when calculating a signature over this public key. See
+// RFC 4880, section 5.2.4.
+func (pk *PublicKey) SerializeSignaturePrefix(h hash.Hash) {
+       var pLength uint16
+       switch pk.PubKeyAlgo {
+       case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
+               pLength += 2 + uint16(len(pk.n.bytes))
+               pLength += 2 + uint16(len(pk.e.bytes))
+       case PubKeyAlgoDSA:
+               pLength += 2 + uint16(len(pk.p.bytes))
+               pLength += 2 + uint16(len(pk.q.bytes))
+               pLength += 2 + uint16(len(pk.g.bytes))
+               pLength += 2 + uint16(len(pk.y.bytes))
+       default:
+               panic("unknown public key algorithm")
+       }
+       pLength += 6
+       h.Write([]byte{0x99, byte(pLength >> 8), byte(pLength)})
+       return
+}
+
+// Serialize marshals the PublicKey to w in the form of an OpenPGP public key
+// packet, not including the packet header.
+func (pk *PublicKey) Serialize(w io.Writer) (err os.Error) {
+       var buf [6]byte
+       buf[0] = 4
+       buf[1] = byte(pk.CreationTime >> 24)
+       buf[2] = byte(pk.CreationTime >> 16)
+       buf[3] = byte(pk.CreationTime >> 8)
+       buf[4] = byte(pk.CreationTime)
+       buf[5] = byte(pk.PubKeyAlgo)
+
+       _, err = w.Write(buf[:])
+       if err != nil {
+               return
+       }
+
+       switch pk.PubKeyAlgo {
+       case PubKeyAlgoRSA, PubKeyAlgoRSAEncryptOnly, PubKeyAlgoRSASignOnly:
+               return writeMPIs(w, pk.n, pk.e)
+       case PubKeyAlgoDSA:
+               return writeMPIs(w, pk.p, pk.q, pk.g, pk.y)
+       }
+       return error.InvalidArgumentError("bad public-key algorithm")
+}
+
+// CanSign returns true iff this public key can generate signatures
+func (pk *PublicKey) CanSign() bool {
+       return pk.PubKeyAlgo != PubKeyAlgoRSAEncryptOnly && pk.PubKeyAlgo != PubKeyAlgoElgamal
+}
+
+// VerifySignature returns nil iff sig is a valid signature, made by this
+// public key, of the data hashed into signed. signed is mutated by this call.
+func (pk *PublicKey) VerifySignature(signed hash.Hash, sig *Signature) (err os.Error) {
+       if !pk.CanSign() {
+               return error.InvalidArgumentError("public key cannot generate signatures")
+       }
+
+       rsaPublicKey, ok := pk.PublicKey.(*rsa.PublicKey)
+       if !ok {
+               // TODO(agl): support DSA and ECDSA keys.
+               return error.UnsupportedError("non-RSA public key")
+       }
+
+       signed.Write(sig.HashSuffix)
+       hashBytes := signed.Sum()
+
+       if hashBytes[0] != sig.HashTag[0] || hashBytes[1] != sig.HashTag[1] {
+               return error.SignatureError("hash tag doesn't match")
+       }
+
+       err = rsa.VerifyPKCS1v15(rsaPublicKey, sig.Hash, hashBytes, sig.Signature)
+       if err != nil {
+               return error.SignatureError("RSA verification failure")
+       }
+       return nil
+}
+
+// VerifyKeySignature returns nil iff sig is a valid signature, make by this
+// public key, of the public key in signed.
+func (pk *PublicKey) VerifyKeySignature(signed *PublicKey, sig *Signature) (err os.Error) {
+       h := sig.Hash.New()
+       if h == nil {
+               return error.UnsupportedError("hash function")
+       }
+
+       // RFC 4880, section 5.2.4
+       pk.SerializeSignaturePrefix(h)
+       pk.Serialize(h)
+       signed.SerializeSignaturePrefix(h)
+       signed.Serialize(h)
+
+       return pk.VerifySignature(h, sig)
+}
+
+// VerifyUserIdSignature returns nil iff sig is a valid signature, make by this
+// public key, of the given user id.
+func (pk *PublicKey) VerifyUserIdSignature(id string, sig *Signature) (err os.Error) {
+       h := sig.Hash.New()
+       if h == nil {
+               return error.UnsupportedError("hash function")
+       }
+
+       // RFC 4880, section 5.2.4
+       pk.SerializeSignaturePrefix(h)
+       pk.Serialize(h)
+
+       var buf [5]byte
+       buf[0] = 0xb4
+       buf[1] = byte(len(id) >> 24)
+       buf[2] = byte(len(id) >> 16)
+       buf[3] = byte(len(id) >> 8)
+       buf[4] = byte(len(id))
+       h.Write(buf[:])
+       h.Write([]byte(id))
+
+       return pk.VerifySignature(h, sig)
+}
+
+// A parsedMPI is used to store the contents of a big integer, along with the
+// bit length that was specified in the original input. This allows the MPI to
+// be reserialised exactly.
+type parsedMPI struct {
+       bytes     []byte
+       bitLength uint16
+}
+
+// writeMPIs is a utility function for serialising several big integers to the
+// given Writer.
+func writeMPIs(w io.Writer, mpis ...parsedMPI) (err os.Error) {
+       for _, mpi := range mpis {
+               err = writeMPI(w, mpi.bitLength, mpi.bytes)
+               if err != nil {
+                       return
+               }
+       }
+       return
+}
diff --git a/src/pkg/crypto/openpgp/packet/public_key_test.go b/src/pkg/crypto/openpgp/packet/public_key_test.go
new file mode 100644 (file)
index 0000000..c015f64
--- /dev/null
@@ -0,0 +1,58 @@
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package packet
+
+import (
+       "bytes"
+       "encoding/hex"
+       "testing"
+)
+
+var pubKeyTests = []struct {
+       hexData        string
+       hexFingerprint string
+       creationTime   uint32
+       pubKeyAlgo     PublicKeyAlgorithm
+       keyId          uint64
+}{
+       {rsaPkDataHex, rsaFingerprintHex, 0x4d3c5c10, PubKeyAlgoRSA, 0xa34d7e18c20c31bb},
+       {dsaPkDataHex, dsaFingerprintHex, 0x4d432f89, PubKeyAlgoDSA, 0x8e8fbe54062f19ed},
+}
+
+func TestPublicKeyRead(t *testing.T) {
+       for i, test := range pubKeyTests {
+               packet, err := Read(readerFromHex(test.hexData))
+               if err != nil {
+                       t.Errorf("#%d: Read error: %s", i, err)
+                       return
+               }
+               pk, ok := packet.(*PublicKey)
+               if !ok {
+                       t.Errorf("#%d: failed to parse, got: %#v", i, packet)
+                       return
+               }
+               if pk.PubKeyAlgo != test.pubKeyAlgo {
+                       t.Errorf("#%d: bad public key algorithm got:%x want:%x", i, pk.PubKeyAlgo, test.pubKeyAlgo)
+               }
+               if pk.CreationTime != test.creationTime {
+                       t.Errorf("#%d: bad creation time got:%x want:%x", i, pk.CreationTime, test.creationTime)
+               }
+               expectedFingerprint, _ := hex.DecodeString(test.hexFingerprint)
+               if !bytes.Equal(expectedFingerprint, pk.Fingerprint[:]) {
+                       t.Errorf("#%d: bad fingerprint got:%x want:%x", i, pk.Fingerprint[:], expectedFingerprint)
+               }
+               if pk.KeyId != test.keyId {
+                       t.Errorf("#%d: bad keyid got:%x want:%x", i, pk.KeyId, test.keyId)
+               }
+       }
+}
+
+const rsaFingerprintHex = "5fb74b1d03b1e3cb31bc2f8aa34d7e18c20c31bb"
+
+const rsaPkDataHex = "988d044d3c5c10010400b1d13382944bd5aba23a4312968b5095d14f947f600eb478e14a6fcb16b0e0cac764884909c020bc495cfcc39a935387c661507bdb236a0612fb582cac3af9b29cc2c8c70090616c41b662f4da4c1201e195472eb7f4ae1ccbcbf9940fe21d985e379a5563dde5b9a23d35f1cfaa5790da3b79db26f23695107bfaca8e7b5bcd0011010001"
+
+const dsaFingerprintHex = "eece4c094db002103714c63c8e8fbe54062f19ed"
+
+const dsaPkDataHex = "9901a2044d432f89110400cd581334f0d7a1e1bdc8b9d6d8c0baf68793632735d2bb0903224cbaa1dfbf35a60ee7a13b92643421e1eb41aa8d79bea19a115a677f6b8ba3c7818ce53a6c2a24a1608bd8b8d6e55c5090cbde09dd26e356267465ae25e69ec8bdd57c7bbb2623e4d73336f73a0a9098f7f16da2e25252130fd694c0e8070c55a812a423ae7f00a0ebf50e70c2f19c3520a551bd4b08d30f23530d3d03ff7d0bf4a53a64a09dc5e6e6e35854b7d70c882b0c60293401958b1bd9e40abec3ea05ba87cf64899299d4bd6aa7f459c201d3fbbd6c82004bdc5e8a9eb8082d12054cc90fa9d4ec251a843236a588bf49552441817436c4f43326966fe85447d4e6d0acf8fa1ef0f014730770603ad7634c3088dc52501c237328417c31c89ed70400b2f1a98b0bf42f11fefc430704bebbaa41d9f355600c3facee1e490f64208e0e094ea55e3a598a219a58500bf78ac677b670a14f4e47e9cf8eab4f368cc1ddcaa18cc59309d4cc62dd4f680e73e6cc3e1ce87a84d0925efbcb26c575c093fc42eecf45135fabf6403a25c2016e1774c0484e440a18319072c617cc97ac0a3bb0"