}
// Insertion sort
-func InsertionSort(data SortInterface, a, b int) {
+func insertionSort(data SortInterface, a, b int) {
for i := a+1; i < b; i++ {
for j := i; j > a && data.Less(j, j-1); j-- {
data.Swap(j, j-1);
// ``Engineering a Sort Function,'' SP&E November 1993.
// Move the median of the three values data[a], data[b], data[c] into data[a].
-func MedianOfThree(data SortInterface, a, b, c int) {
+func medianOfThree(data SortInterface, a, b, c int) {
m0 := b;
m1 := a;
m2 := c;
// now data[m0] <= data[m1] <= data[m2]
}
-func SwapRange(data SortInterface, a, b, n int) {
+func swapRange(data SortInterface, a, b, n int) {
for i := 0; i < n; i++ {
data.Swap(a+i, b+i);
}
}
-func Pivot(data SortInterface, lo, hi int) (midlo, midhi int) {
+func doPivot(data SortInterface, lo, hi int) (midlo, midhi int) {
m := (lo+hi)/2;
if hi - lo > 40 {
// Tukey's ``Ninther,'' median of three medians of three.
s := (hi - lo) / 8;
- MedianOfThree(data, lo, lo+s, lo+2*s);
- MedianOfThree(data, m, m-s, m+s);
- MedianOfThree(data, hi-1, hi-1-s, hi-1-2*s);
+ medianOfThree(data, lo, lo+s, lo+2*s);
+ medianOfThree(data, m, m-s, m+s);
+ medianOfThree(data, hi-1, hi-1-s, hi-1-2*s);
}
- MedianOfThree(data, lo, m, hi-1);
+ medianOfThree(data, lo, m, hi-1);
// Invariants are:
// data[lo] = pivot (set up by ChoosePivot)
}
n := min(b-a, a-lo);
- SwapRange(data, lo, b-n, n);
+ swapRange(data, lo, b-n, n);
n = min(hi-d, d-c);
- SwapRange(data, c, hi-n, n);
+ swapRange(data, c, hi-n, n);
return lo+b-a, hi-(d-c);
}
-func Quicksort(data SortInterface, a, b int) {
+func quickSort(data SortInterface, a, b int) {
if b - a > 7 {
- mlo, mhi := Pivot(data, a, b);
- Quicksort(data, a, mlo);
- Quicksort(data, mhi, b);
+ mlo, mhi := doPivot(data, a, b);
+ quickSort(data, a, mlo);
+ quickSort(data, mhi, b);
} else if b - a > 1 {
- InsertionSort(data, a, b);
+ insertionSort(data, a, b);
}
}
export func Sort(data SortInterface) {
- Quicksort(data, 0, data.Len());
+ quickSort(data, 0, data.Len());
}
"testing";
)
-func BentleyMcIlroyTests();
-
var ints = [...]int{74, 59, 238, -784, 9845, 959, 905, 0, 0, 42, 7586, -5467984, 7586}
var floats = [...]float{74.3, 59.0, 238.2, -784.0, 2.3, 9845.768, -959.7485, 905, 7.8, 7.8}
}
}
-export func TestSortLargeRandom(t *testing.T) {
+export func TestSortLarge_Random(t *testing.T) {
data := make([]int, 1000000);
for i := 0; i < len(data); i++ {
data[i] = rand.rand() % 100;
}
const (
- Sawtooth = iota;
- Rand;
- Stagger;
- Plateau;
- Shuffle;
- NDist;
+ _Sawtooth = iota;
+ _Rand;
+ _Stagger;
+ _Plateau;
+ _Shuffle;
+ _NDist;
)
const (
- Copy = iota;
- Reverse;
- ReverseFirstHalf;
- ReverseSecondHalf;
- Sorted;
- Dither;
- NMode;
-);
-
-type TestingData struct {
+ _Copy = iota;
+ _Reverse;
+ _ReverseFirstHalf;
+ _ReverseSecondHalf;
+ _Sorted;
+ _Dither;
+ _NMode;
+)
+
+type testingData struct {
desc string;
t *testing.T;
data []int;
nswap int;
}
-func (d *TestingData) Len() int { return len(d.data); }
-func (d *TestingData) Less(i, j int) bool { return d.data[i] < d.data[j]; }
-func (d *TestingData) Swap(i, j int) {
+func (d *testingData) Len() int { return len(d.data); }
+func (d *testingData) Less(i, j int) bool { return d.data[i] < d.data[j]; }
+func (d *testingData) Swap(i, j int) {
if d.nswap >= d.maxswap {
d.t.Errorf("%s: used %d swaps sorting array of %d", d.desc, d.nswap, len(d.data));
d.t.FailNow();
d.data[i], d.data[j] = d.data[j], d.data[i];
}
-func Lg(n int) int {
+func lg(n int) int {
i := 0;
for 1<<uint(i) < n {
i++;
return i;
}
-func Min(a, b int) int {
- if a < b {
- return a;
- }
- return b;
-}
-
export func TestBentleyMcIlroy(t *testing.T) {
sizes := []int{100, 1023, 1024, 1025};
dists := []string{"sawtooth", "rand", "stagger", "plateau", "shuffle"};
for ni := 0; ni < len(sizes); ni++ {
n := sizes[ni];
for m := 1; m < 2*n; m *= 2 {
- for dist := 0; dist < NDist; dist++ {
+ for dist := 0; dist < _NDist; dist++ {
j := 0;
k := 1;
data := tmp1[0:n];
for i := 0; i < n; i++ {
switch dist {
- case Sawtooth:
+ case _Sawtooth:
data[i] = i % m;
- case Rand:
+ case _Rand:
data[i] = rand.rand() % m;
- case Stagger:
+ case _Stagger:
data[i] = (i*m + i) % n;
- case Plateau:
- data[i] = Min(i, m);
- case Shuffle:
+ case _Plateau:
+ data[i] = min(i, m);
+ case _Shuffle:
if rand.rand() % m != 0 {
j += 2;
data[i] = j;
}
mdata := tmp2[0:n];
- for mode := 0; mode < NMode; mode++ {
+ for mode := 0; mode < _NMode; mode++ {
switch mode {
- case Copy:
+ case _Copy:
for i := 0; i < n; i++ {
mdata[i] = data[i];
}
- case Reverse:
+ case _Reverse:
for i := 0; i < n; i++ {
mdata[i] = data[n-i-1];
}
- case ReverseFirstHalf:
+ case _ReverseFirstHalf:
for i := 0; i < n/2; i++ {
mdata[i] = data[n/2-i-1];
}
for i := n/2; i < n; i++ {
mdata[i] = data[i];
}
- case ReverseSecondHalf:
+ case _ReverseSecondHalf:
for i := 0; i < n/2; i++ {
mdata[i] = data[i];
}
for i := n/2; i < n; i++ {
mdata[i] = data[n-(i-n/2)-1];
}
- case Sorted:
+ case _Sorted:
for i := 0; i < n; i++ {
mdata[i] = data[i];
}
// sort.SortInts is known to be correct
- // because mode Sort runs after mode Copy.
+ // because mode Sort runs after mode _Copy.
sort.SortInts(mdata);
- case Dither:
+ case _Dither:
for i := 0; i < n; i++ {
mdata[i] = data[i] + i%5;
}
}
desc := fmt.Sprintf("n=%d m=%d dist=%s mode=%s", n, m, dists[dist], modes[mode]);
- d := &TestingData{desc, t, mdata[0:n], n*Lg(n)*12/10, 0};
+ d := &testingData{desc, t, mdata[0:n], n*lg(n)*12/10, 0};
sort.Sort(d);
// If we were testing C qsort, we'd have to make a copy
var chatty = flag.Bool("chatty", false, "chatty")
// Insert tabs after newlines - but not the last one
-func Tabify(s string) string {
+func tabify(s string) string {
for i := 0; i < len(s) - 1; i++ { // -1 because if last char is newline, don't bother
if s[i] == '\n' {
- return s[0:i+1] + "\t" + Tabify(s[i+1:len(s)]);
+ return s[0:i+1] + "\t" + tabify(s[i+1:len(s)]);
}
}
return s
}
func (t *T) Log(args ...) {
- t.errors += "\t" + Tabify(fmt.Sprintln(args));
+ t.errors += "\t" + tabify(fmt.Sprintln(args));
}
func (t *T) Logf(format string, args ...) {
- t.errors += Tabify(fmt.Sprintf("\t" + format, args));
+ t.errors += tabify(fmt.Sprintf("\t" + format, args));
l := len(t.errors);
if l > 0 && t.errors[l-1] != '\n' {
t.errors += "\n"
f *(*T);
}
-func TRunner(t *T, test *Test) {
+func tRunner(t *T, test *Test) {
test.f(t);
t.ch <- t;
}
}
t := new(T);
t.ch = make(chan *T);
- go TRunner(t, &tests[i]);
+ go tRunner(t, &tests[i]);
<-t.ch;
if t.failed {
println("--- FAIL:", tests[i].name);