// @@@ Types
var (
- anyTypeName = types2.Universe.Lookup("any").(*types2.TypeName)
- comparableTypeName = types2.Universe.Lookup("comparable").(*types2.TypeName)
- runeTypeName = types2.Universe.Lookup("rune").(*types2.TypeName)
+ anyTypeName = types2.Universe.Lookup("any").(*types2.TypeName)
+ runeTypeName = types2.Universe.Lookup("rune").(*types2.TypeName)
)
// typ writes a use of the given type into the bitstream.
w.Len(int(kind))
default:
- // Handle "byte" and "rune" as references to their TypeNames.
+ // Handle "byte" and "rune" as references to their TypeName.
obj := types2.Universe.Lookup(typ.Name())
assert(obj.Type() == typ)
w.structType(typ)
case *types2.Interface:
- // Handle "any" as reference to its TypeName.
if typ == anyTypeName.Type() {
w.Code(pkgbits.TypeNamed)
w.obj(anyTypeName, nil)
}
func (w *writer) interfaceType(typ *types2.Interface) {
- // If typ has no embedded types but it's not a basic interface, then
- // the natural description we write out below will fail to
- // reconstruct it.
- if typ.NumEmbeddeds() == 0 && !typ.IsMethodSet() {
- // Currently, this can only happen for the underlying Interface of
- // "comparable", which is needed to handle type declarations like
- // "type C comparable".
- assert(typ == comparableTypeName.Type().(*types2.Named).Underlying())
-
- // Export as "interface{ comparable }".
- w.Len(0) // NumExplicitMethods
- w.Len(1) // NumEmbeddeds
- w.Bool(false) // IsImplicit
- w.typ(comparableTypeName.Type()) // EmbeddedType(0)
- return
- }
-
w.Len(typ.NumExplicitMethods())
w.Len(typ.NumEmbeddeds())
return pkgbits.ObjFunc
case *types2.TypeName:
+ decl, ok := w.p.typDecls[obj]
+ assert(ok)
+
if obj.IsAlias() {
w.pos(obj)
w.typ(obj.Type())
w.pos(obj)
w.typeParamNames(named.TypeParams())
wext.typeExt(obj)
- w.typ(named.Underlying())
+ w.typExpr(decl.Type)
w.Len(named.NumMethods())
for i := 0; i < named.NumMethods(); i++ {
}
}
+// typExpr writes the type represented by the given expression.
+//
+// TODO(mdempsky): Document how this differs from exprType.
+func (w *writer) typExpr(expr syntax.Expr) {
+ tv, ok := w.p.info.Types[expr]
+ assert(ok)
+ assert(tv.IsType())
+ w.typ(tv.Type)
+}
+
// objDict writes the dictionary needed for reading the given object.
func (w *writer) objDict(obj types2.Object, dict *writerDict) {
// TODO(mdempsky): Split objDict into multiple entries? reader.go
F[V]()
F[W]()
- type X[A any] U[X[A]]
-
- F[X[int]]()
- F[X[Int]]()
- F[X[GlobalInt]]()
+ // TODO(go.dev/issue/54512): Restore these tests. They currently
+ // cause problems for shaping with unified IR.
+ //
+ // For example, instantiating X[int] requires instantiating shape
+ // type X[shapify(int)] == X[go.shape.int]. In turn, this requires
+ // instantiating U[shapify(X[go.shape.int])]. But we're still in the
+ // process of constructing X[go.shape.int], so we don't yet know its
+ // underlying type.
+ //
+ // Notably, this is a consequence of unified IR writing out type
+ // declarations with a reference to the full RHS expression (i.e.,
+ // U[X[A]]) rather than its underlying type (i.e., int), which is
+ // necessary to support //go:notinheap. Once go.dev/issue/46731 is
+ // implemented and unified IR is updated, I expect this will just
+ // work.
+ //
+ // type X[A any] U[X[A]]
+ //
+ // F[X[int]]()
+ // F[X[Int]]()
+ // F[X[GlobalInt]]()
for j, tj := range tests {
for i, ti := range tests[:j+1] {