The current memmove implementation uses REP MOVSB to copy data larger than
2KB when the useAVXmemmove global variable is false and the CPU supports
the ERMS feature.
This feature is currently only enabled on CPUs in the Sandy Bridge (Client)
, Sandy Bridge (Server), Ivy Bridge (Client), and Ivy Bridge (Server)
microarchitectures.
For modern Intel CPU microarchitectures that support the ERMS feature, such
as Ice Lake (Server), Sapphire Rapids , REP MOVSB achieves better
performance than the AVX-based copy currently implemented in memmove.
Benchstat result:
goos: linux
goarch: amd64
pkg: runtime
cpu: Intel(R) Xeon(R) Gold 6348 CPU @ 2.60GHz
│ ./old.txt │ ./new.txt │
│ sec/op │ sec/op vs base │
Memmove/2048-2 25.24n ± 0% 24.27n ± 0% -3.84% (p=0.000 n=10)
Memmove/4096-2 44.87n ± 0% 33.16n ± 1% -26.11% (p=0.000 n=10)
geomean 33.65n 28.37n -15.71%
│ ./old.txt │ ./new.txt │
│ B/s │ B/s vs base │
Memmove/2048-2 75.56Gi ± 0% 78.59Gi ± 0% +4.02% (p=0.000 n=10)
Memmove/4096-2 85.01Gi ± 0% 115.05Gi ± 1% +35.34% (p=0.000 n=10)
geomean 80.14Gi 95.09Gi +18.65%
Fixes #66958
Change-Id: I1fafd1b51a16752f83ac15047cf3b29422a79d5d
GitHub-Last-Rev:
89cf5af32b1b41e1499282058656a8a5c7aed359
GitHub-Pull-Request: golang/go#66959
Reviewed-on: https://go-review.googlesource.com/c/go/+/580735
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Keith Randall <khr@google.com>
Reviewed-by: Keith Randall <khr@golang.org>
Auto-Submit: Keith Randall <khr@golang.org>
Reviewed-by: Cherry Mui <cherryyz@google.com>
HasBMI1 bool
HasBMI2 bool
HasERMS bool
+ HasFSRM bool
HasFMA bool
HasOSXSAVE bool
HasPCLMULQDQ bool
cpuid_SHA = 1 << 29
cpuid_AVX512BW = 1 << 30
cpuid_AVX512VL = 1 << 31
-
+ // edx bits
+ cpuid_FSRM = 1 << 4
// edx bits for CPUID 0x80000001
cpuid_RDTSCP = 1 << 27
)
{Name: "adx", Feature: &X86.HasADX},
{Name: "aes", Feature: &X86.HasAES},
{Name: "erms", Feature: &X86.HasERMS},
+ {Name: "fsrm", Feature: &X86.HasFSRM},
{Name: "pclmulqdq", Feature: &X86.HasPCLMULQDQ},
{Name: "rdtscp", Feature: &X86.HasRDTSCP},
{Name: "sha", Feature: &X86.HasSHA},
return
}
- _, ebx7, _, _ := cpuid(7, 0)
+ _, ebx7, _, edx7 := cpuid(7, 0)
X86.HasBMI1 = isSet(ebx7, cpuid_BMI1)
X86.HasAVX2 = isSet(ebx7, cpuid_AVX2) && osSupportsAVX
X86.HasBMI2 = isSet(ebx7, cpuid_BMI2)
X86.HasAVX512VL = isSet(ebx7, cpuid_AVX512VL)
}
+ X86.HasFSRM = isSet(edx7, cpuid_FSRM)
+
var maxExtendedInformation uint32
maxExtendedInformation, _, _, _ = cpuid(0x80000000, 0)
"internal/cpu"
)
-var useAVXmemmove bool
+var memmoveBits uint8
-func init() {
- // Let's remove stepping and reserved fields
- processor := processorVersionInfo & 0x0FFF3FF0
+const (
+ // avxSupported indicates that the CPU supports AVX instructions.
+ avxSupported = 1 << 0
- isIntelBridgeFamily := isIntel &&
- processor == 0x206A0 ||
- processor == 0x206D0 ||
- processor == 0x306A0 ||
- processor == 0x306E0
+ // repmovsPreferred indicates that REP MOVSx instruction is more
+ // efficient on the CPU.
+ repmovsPreferred = 1 << 1
+)
- useAVXmemmove = cpu.X86.HasAVX && !isIntelBridgeFamily
+func init() {
+ // Here we assume that on modern CPUs with both FSRM and ERMS features,
+ // copying data blocks of 2KB or larger using the REP MOVSB instruction
+ // will be more efficient to avoid having to keep up with CPU generations.
+ // Therefore, we may retain a BlockList mechanism to ensure that microarchitectures
+ // that do not fit this case may appear in the future.
+ // We enable it on Intel CPUs first, and we may support more platforms
+ // in the future.
+ isERMSNiceCPU := isIntel
+ useREPMOV := isERMSNiceCPU && cpu.X86.HasERMS && cpu.X86.HasFSRM
+ if cpu.X86.HasAVX {
+ memmoveBits |= avxSupported
+ }
+ if useREPMOV {
+ memmoveBits |= repmovsPreferred
+ }
}
CMPQ BX, $256
JBE move_129through256
- TESTB $1, runtime·useAVXmemmove(SB)
- JNZ avxUnaligned
-
+ MOVB runtime·memmoveBits(SB), AX
+ // We have AVX but we don't want to use REP MOVSx.
+ CMPB AX, $const_avxSupported
+ JEQ avxUnaligned
/*
* check and set for backwards
*/
JLS back
/*
- * forward copy loop
- */
+* forward copy loop
+*/
forward:
CMPQ BX, $2048
- JLS move_256through2048
-
- // If REP MOVSB isn't fast, don't use it
- CMPB internal∕cpu·X86+const_offsetX86HasERMS(SB), $1 // enhanced REP MOVSB/STOSB
- JNE fwdBy8
+ JL check_avx
+ // REP MOVSx is slow if destination address is unaligned.
+ TESTQ $15,DI
+ JNZ check_avx
+ TESTB $const_repmovsPreferred, AX
+ JNZ fwdBy8
+ // For backward copy, REP MOVSx performs worse than avx.
+check_avx:
+ TESTB $const_avxSupported, AX
+ JNZ avxUnaligned
+ CMPQ BX, $2048
+ JLS move_256through2048
// Check alignment
MOVL SI, AX
ORL DI, AX
RET
fwdBy8:
+ // Loading the last (possibly partially overlapping) word and writing
+ // it at the end.
+ MOVQ -8(SI)(BX*1), AX
+ LEAQ -8(DI)(BX*1), DX
// Do 8 bytes at a time
- MOVQ BX, CX
+ LEAQ -1(BX),CX
SHRQ $3, CX
- ANDQ $7, BX
REP; MOVSQ
- JMP tail
+ MOVQ AX, (DX)
+ RET
back:
/*
ADDQ BX, CX
CMPQ CX, DI
JLS forward
+
+ TESTB $const_avxSupported, AX
+ JNZ avxUnaligned
/*
* whole thing backwards has
* adjusted addresses