package main
 
 import (
+       "math"
        "runtime"
        "testing"
 )
        testShiftRemoval(t)
        testShiftedOps(t)
        testDivFixUp(t)
+       testDivisibleSignedPow2(t)
 }
 
 // testDivFixUp ensures that signed division fix-ups are being generated.
                g64 = z % int64(i)
        }
 }
+
+//go:noinline
+func divisible_int8_2to1(x int8) bool {
+       return x%(1<<1) == 0
+}
+
+//go:noinline
+func divisible_int8_2to2(x int8) bool {
+       return x%(1<<2) == 0
+}
+
+//go:noinline
+func divisible_int8_2to3(x int8) bool {
+       return x%(1<<3) == 0
+}
+
+//go:noinline
+func divisible_int8_2to4(x int8) bool {
+       return x%(1<<4) == 0
+}
+
+//go:noinline
+func divisible_int8_2to5(x int8) bool {
+       return x%(1<<5) == 0
+}
+
+//go:noinline
+func divisible_int8_2to6(x int8) bool {
+       return x%(1<<6) == 0
+}
+
+//go:noinline
+func divisible_int16_2to1(x int16) bool {
+       return x%(1<<1) == 0
+}
+
+//go:noinline
+func divisible_int16_2to2(x int16) bool {
+       return x%(1<<2) == 0
+}
+
+//go:noinline
+func divisible_int16_2to3(x int16) bool {
+       return x%(1<<3) == 0
+}
+
+//go:noinline
+func divisible_int16_2to4(x int16) bool {
+       return x%(1<<4) == 0
+}
+
+//go:noinline
+func divisible_int16_2to5(x int16) bool {
+       return x%(1<<5) == 0
+}
+
+//go:noinline
+func divisible_int16_2to6(x int16) bool {
+       return x%(1<<6) == 0
+}
+
+//go:noinline
+func divisible_int16_2to7(x int16) bool {
+       return x%(1<<7) == 0
+}
+
+//go:noinline
+func divisible_int16_2to8(x int16) bool {
+       return x%(1<<8) == 0
+}
+
+//go:noinline
+func divisible_int16_2to9(x int16) bool {
+       return x%(1<<9) == 0
+}
+
+//go:noinline
+func divisible_int16_2to10(x int16) bool {
+       return x%(1<<10) == 0
+}
+
+//go:noinline
+func divisible_int16_2to11(x int16) bool {
+       return x%(1<<11) == 0
+}
+
+//go:noinline
+func divisible_int16_2to12(x int16) bool {
+       return x%(1<<12) == 0
+}
+
+//go:noinline
+func divisible_int16_2to13(x int16) bool {
+       return x%(1<<13) == 0
+}
+
+//go:noinline
+func divisible_int16_2to14(x int16) bool {
+       return x%(1<<14) == 0
+}
+
+//go:noinline
+func divisible_int32_2to4(x int32) bool {
+       return x%(1<<4) == 0
+}
+
+//go:noinline
+func divisible_int32_2to15(x int32) bool {
+       return x%(1<<15) == 0
+}
+
+//go:noinline
+func divisible_int32_2to26(x int32) bool {
+       return x%(1<<26) == 0
+}
+
+//go:noinline
+func divisible_int64_2to4(x int64) bool {
+       return x%(1<<4) == 0
+}
+
+//go:noinline
+func divisible_int64_2to15(x int64) bool {
+       return x%(1<<15) == 0
+}
+
+//go:noinline
+func divisible_int64_2to26(x int64) bool {
+       return x%(1<<26) == 0
+}
+
+//go:noinline
+func divisible_int64_2to34(x int64) bool {
+       return x%(1<<34) == 0
+}
+
+//go:noinline
+func divisible_int64_2to48(x int64) bool {
+       return x%(1<<48) == 0
+}
+
+//go:noinline
+func divisible_int64_2to57(x int64) bool {
+       return x%(1<<57) == 0
+}
+
+// testDivisibleSignedPow2 confirms that x%(1<<k)==0 is rewritten correctly
+func testDivisibleSignedPow2(t *testing.T) {
+       var i int64
+       var pow2 = []int64{
+               1,
+               1 << 1,
+               1 << 2,
+               1 << 3,
+               1 << 4,
+               1 << 5,
+               1 << 6,
+               1 << 7,
+               1 << 8,
+               1 << 9,
+               1 << 10,
+               1 << 11,
+               1 << 12,
+               1 << 13,
+               1 << 14,
+       }
+       // exhaustive test for int8
+       for i = math.MinInt8; i <= math.MaxInt8; i++ {
+               if want, got := int8(i)%int8(pow2[1]) == 0, divisible_int8_2to1(int8(i)); got != want {
+                       t.Errorf("divisible_int8_2to1(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int8(i)%int8(pow2[2]) == 0, divisible_int8_2to2(int8(i)); got != want {
+                       t.Errorf("divisible_int8_2to2(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int8(i)%int8(pow2[3]) == 0, divisible_int8_2to3(int8(i)); got != want {
+                       t.Errorf("divisible_int8_2to3(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int8(i)%int8(pow2[4]) == 0, divisible_int8_2to4(int8(i)); got != want {
+                       t.Errorf("divisible_int8_2to4(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int8(i)%int8(pow2[5]) == 0, divisible_int8_2to5(int8(i)); got != want {
+                       t.Errorf("divisible_int8_2to5(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int8(i)%int8(pow2[6]) == 0, divisible_int8_2to6(int8(i)); got != want {
+                       t.Errorf("divisible_int8_2to6(%d) = %v want %v", i, got, want)
+               }
+       }
+       // exhaustive test for int16
+       for i = math.MinInt16; i <= math.MaxInt16; i++ {
+               if want, got := int16(i)%int16(pow2[1]) == 0, divisible_int16_2to1(int16(i)); got != want {
+                       t.Errorf("divisible_int16_2to1(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int16(i)%int16(pow2[2]) == 0, divisible_int16_2to2(int16(i)); got != want {
+                       t.Errorf("divisible_int16_2to2(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int16(i)%int16(pow2[3]) == 0, divisible_int16_2to3(int16(i)); got != want {
+                       t.Errorf("divisible_int16_2to3(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int16(i)%int16(pow2[4]) == 0, divisible_int16_2to4(int16(i)); got != want {
+                       t.Errorf("divisible_int16_2to4(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int16(i)%int16(pow2[5]) == 0, divisible_int16_2to5(int16(i)); got != want {
+                       t.Errorf("divisible_int16_2to5(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int16(i)%int16(pow2[6]) == 0, divisible_int16_2to6(int16(i)); got != want {
+                       t.Errorf("divisible_int16_2to6(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int16(i)%int16(pow2[7]) == 0, divisible_int16_2to7(int16(i)); got != want {
+                       t.Errorf("divisible_int16_2to7(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int16(i)%int16(pow2[8]) == 0, divisible_int16_2to8(int16(i)); got != want {
+                       t.Errorf("divisible_int16_2to8(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int16(i)%int16(pow2[9]) == 0, divisible_int16_2to9(int16(i)); got != want {
+                       t.Errorf("divisible_int16_2to9(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int16(i)%int16(pow2[10]) == 0, divisible_int16_2to10(int16(i)); got != want {
+                       t.Errorf("divisible_int16_2to10(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int16(i)%int16(pow2[11]) == 0, divisible_int16_2to11(int16(i)); got != want {
+                       t.Errorf("divisible_int16_2to11(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int16(i)%int16(pow2[12]) == 0, divisible_int16_2to12(int16(i)); got != want {
+                       t.Errorf("divisible_int16_2to12(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int16(i)%int16(pow2[13]) == 0, divisible_int16_2to13(int16(i)); got != want {
+                       t.Errorf("divisible_int16_2to13(%d) = %v want %v", i, got, want)
+               }
+               if want, got := int16(i)%int16(pow2[14]) == 0, divisible_int16_2to14(int16(i)); got != want {
+                       t.Errorf("divisible_int16_2to14(%d) = %v want %v", i, got, want)
+               }
+       }
+       // spot check for int32 and int64
+       var (
+               two4  int64 = 1 << 4
+               two15 int64 = 1 << 15
+               two26 int64 = 1 << 26
+               two34 int64 = 1 << 34
+               two48 int64 = 1 << 48
+               two57 int64 = 1 << 57
+       )
+       var xs = []int64{two4, two4 + 3, -3 * two4, -3*two4 + 1,
+               two15, two15 + 3, -3 * two15, -3*two15 + 1,
+               two26, two26 + 37, -5 * two26, -5*two26 + 2,
+               two34, two34 + 356, -7 * two34, -7*two34 + 13,
+               two48, two48 + 3000, -12 * two48, -12*two48 + 1111,
+               two57, two57 + 397654, -15 * two57, -15*two57 + 11234,
+       }
+       for _, x := range xs {
+               if int64(int32(x)) == x {
+                       if want, got := int32(x)%int32(two4) == 0, divisible_int32_2to4(int32(x)); got != want {
+                               t.Errorf("divisible_int32_2to4(%d) = %v want %v", x, got, want)
+                       }
+
+                       if want, got := int32(x)%int32(two15) == 0, divisible_int32_2to15(int32(x)); got != want {
+                               t.Errorf("divisible_int32_2to15(%d) = %v want %v", x, got, want)
+                       }
+
+                       if want, got := int32(x)%int32(two26) == 0, divisible_int32_2to26(int32(x)); got != want {
+                               t.Errorf("divisible_int32_2to26(%d) = %v want %v", x, got, want)
+                       }
+               }
+               // spot check for int64
+               if want, got := x%two4 == 0, divisible_int64_2to4(x); got != want {
+                       t.Errorf("divisible_int64_2to4(%d) = %v want %v", x, got, want)
+               }
+
+               if want, got := x%two15 == 0, divisible_int64_2to15(x); got != want {
+                       t.Errorf("divisible_int64_2to15(%d) = %v want %v", x, got, want)
+               }
+
+               if want, got := x%two26 == 0, divisible_int64_2to26(x); got != want {
+                       t.Errorf("divisible_int64_2to26(%d) = %v want %v", x, got, want)
+               }
+
+               if want, got := x%two34 == 0, divisible_int64_2to34(x); got != want {
+                       t.Errorf("divisible_int64_2to34(%d) = %v want %v", x, got, want)
+               }
+
+               if want, got := x%two48 == 0, divisible_int64_2to48(x); got != want {
+                       t.Errorf("divisible_int64_2to48(%d) = %v want %v", x, got, want)
+               }
+
+               if want, got := x%two57 == 0, divisible_int64_2to57(x); got != want {
+                       t.Errorf("divisible_int64_2to57(%d) = %v want %v", x, got, want)
+               }
+
+       }
+}
 
 (Mod32 <t> n (Const32 [c])) && c < 0 && c != -1<<31 -> (Mod32 <t> n (Const32 <t> [-c]))
 (Mod64 <t> n (Const64 [c])) && c < 0 && c != -1<<63 -> (Mod64 <t> n (Const64 <t> [-c]))
 
+// Divisibility check for signed integers for power of two constant are simple mask.
+(Eq8 (Mod8 <t> n (Const8 [c])) (Const8 [0])) && n.Op != OpConst8 && isPowerOfTwo(c&0xff)
+  -> (Eq8 (And8 <t> n (Const8 <t> [(c&0xff)-1])) (Const8 <t> [0]))
+(Eq16 (Mod16 <t> n (Const16 [c])) (Const16 [0])) && n.Op != OpConst16 && isPowerOfTwo(c&0xffff)
+  -> (Eq16 (And16 <t> n (Const16 <t> [(c&0xffff)-1])) (Const16 <t> [0]))
+(Eq32 (Mod32 <t> n (Const32 [c])) (Const32 [0])) && n.Op != OpConst32 && isPowerOfTwo(c&0xffffffff)
+  -> (Eq32 (And32 <t> n (Const32 <t> [(c&0xffffffff)-1])) (Const32 <t> [0]))
+(Eq64 (Mod64 <t> n (Const64 [c])) (Const64 [0])) && n.Op != OpConst64 && isPowerOfTwo(c)
+  -> (Eq64 (And64 <t> n (Const64 <t> [c-1])) (Const64 <t> [0]))
+
+
 // All other mods by constants, do A%B = A-(A/B*B).
 // This implements % with two * and a bunch of ancillary ops.
 // One of the * is free if the user's code also computes A/B.
-(Mod8   <t> x (Const8  [c])) && x.Op != OpConst8  && (c > 0 || c == -1<<7)
+(Mod8   <t> x (Const8  [c])) && x.Op != OpConst8  && (c > 0 || c == -1<<7) && v.Block.Func.pass.name != "opt"
   -> (Sub8  x (Mul8  <t> (Div8   <t> x (Const8  <t> [c])) (Const8  <t> [c])))
-(Mod16  <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15)
+(Mod16  <t> x (Const16 [c])) && x.Op != OpConst16 && (c > 0 || c == -1<<15) && v.Block.Func.pass.name != "opt"
   -> (Sub16 x (Mul16 <t> (Div16  <t> x (Const16 <t> [c])) (Const16 <t> [c])))
-(Mod32  <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31)
+(Mod32  <t> x (Const32 [c])) && x.Op != OpConst32 && (c > 0 || c == -1<<31) && v.Block.Func.pass.name != "opt"
   -> (Sub32 x (Mul32 <t> (Div32  <t> x (Const32 <t> [c])) (Const32 <t> [c])))
-(Mod64  <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63)
+(Mod64  <t> x (Const64 [c])) && x.Op != OpConst64 && (c > 0 || c == -1<<63) && v.Block.Func.pass.name != "opt"
   -> (Sub64 x (Mul64 <t> (Div64  <t> x (Const64 <t> [c])) (Const64 <t> [c])))
 (Mod8u  <t> x (Const8  [c])) && x.Op != OpConst8  && c > 0 && umagicOK(8 ,c)
   -> (Sub8  x (Mul8  <t> (Div8u  <t> x (Const8  <t> [c])) (Const8  <t> [c])))
 
        case OpDiv8u:
                return rewriteValuegeneric_OpDiv8u_0(v)
        case OpEq16:
-               return rewriteValuegeneric_OpEq16_0(v)
+               return rewriteValuegeneric_OpEq16_0(v) || rewriteValuegeneric_OpEq16_10(v)
        case OpEq32:
-               return rewriteValuegeneric_OpEq32_0(v)
+               return rewriteValuegeneric_OpEq32_0(v) || rewriteValuegeneric_OpEq32_10(v)
        case OpEq32F:
                return rewriteValuegeneric_OpEq32F_0(v)
        case OpEq64:
-               return rewriteValuegeneric_OpEq64_0(v)
+               return rewriteValuegeneric_OpEq64_0(v) || rewriteValuegeneric_OpEq64_10(v)
        case OpEq64F:
                return rewriteValuegeneric_OpEq64F_0(v)
        case OpEq8:
-               return rewriteValuegeneric_OpEq8_0(v)
+               return rewriteValuegeneric_OpEq8_0(v) || rewriteValuegeneric_OpEq8_10(v)
        case OpEqB:
                return rewriteValuegeneric_OpEqB_0(v)
        case OpEqInter:
                v.AuxInt = b2i(c == d)
                return true
        }
+       // match: (Eq16 (Mod16 <t> n (Const16 [c])) (Const16 [0]))
+       // cond: n.Op != OpConst16 && isPowerOfTwo(c&0xffff)
+       // result: (Eq16 (And16 <t> n (Const16 <t> [(c&0xffff)-1])) (Const16 <t> [0]))
+       for {
+               _ = v.Args[1]
+               v_0 := v.Args[0]
+               if v_0.Op != OpMod16 {
+                       break
+               }
+               t := v_0.Type
+               _ = v_0.Args[1]
+               n := v_0.Args[0]
+               v_0_1 := v_0.Args[1]
+               if v_0_1.Op != OpConst16 {
+                       break
+               }
+               c := v_0_1.AuxInt
+               v_1 := v.Args[1]
+               if v_1.Op != OpConst16 {
+                       break
+               }
+               if v_1.AuxInt != 0 {
+                       break
+               }
+               if !(n.Op != OpConst16 && isPowerOfTwo(c&0xffff)) {
+                       break
+               }
+               v.reset(OpEq16)
+               v0 := b.NewValue0(v.Pos, OpAnd16, t)
+               v0.AddArg(n)
+               v1 := b.NewValue0(v.Pos, OpConst16, t)
+               v1.AuxInt = (c & 0xffff) - 1
+               v0.AddArg(v1)
+               v.AddArg(v0)
+               v2 := b.NewValue0(v.Pos, OpConst16, t)
+               v2.AuxInt = 0
+               v.AddArg(v2)
+               return true
+       }
+       // match: (Eq16 (Const16 [0]) (Mod16 <t> n (Const16 [c])))
+       // cond: n.Op != OpConst16 && isPowerOfTwo(c&0xffff)
+       // result: (Eq16 (And16 <t> n (Const16 <t> [(c&0xffff)-1])) (Const16 <t> [0]))
+       for {
+               _ = v.Args[1]
+               v_0 := v.Args[0]
+               if v_0.Op != OpConst16 {
+                       break
+               }
+               if v_0.AuxInt != 0 {
+                       break
+               }
+               v_1 := v.Args[1]
+               if v_1.Op != OpMod16 {
+                       break
+               }
+               t := v_1.Type
+               _ = v_1.Args[1]
+               n := v_1.Args[0]
+               v_1_1 := v_1.Args[1]
+               if v_1_1.Op != OpConst16 {
+                       break
+               }
+               c := v_1_1.AuxInt
+               if !(n.Op != OpConst16 && isPowerOfTwo(c&0xffff)) {
+                       break
+               }
+               v.reset(OpEq16)
+               v0 := b.NewValue0(v.Pos, OpAnd16, t)
+               v0.AddArg(n)
+               v1 := b.NewValue0(v.Pos, OpConst16, t)
+               v1.AuxInt = (c & 0xffff) - 1
+               v0.AddArg(v1)
+               v.AddArg(v0)
+               v2 := b.NewValue0(v.Pos, OpConst16, t)
+               v2.AuxInt = 0
+               v.AddArg(v2)
+               return true
+       }
        // match: (Eq16 s:(Sub16 x y) (Const16 [0]))
        // cond: s.Uses == 1
        // result: (Eq16 x y)
                v.AddArg(y)
                return true
        }
+       return false
+}
+func rewriteValuegeneric_OpEq16_10(v *Value) bool {
        // match: (Eq16 (Const16 [0]) s:(Sub16 x y))
        // cond: s.Uses == 1
        // result: (Eq16 x y)
                v.AuxInt = b2i(c == d)
                return true
        }
+       // match: (Eq32 (Mod32 <t> n (Const32 [c])) (Const32 [0]))
+       // cond: n.Op != OpConst32 && isPowerOfTwo(c&0xffffffff)
+       // result: (Eq32 (And32 <t> n (Const32 <t> [(c&0xffffffff)-1])) (Const32 <t> [0]))
+       for {
+               _ = v.Args[1]
+               v_0 := v.Args[0]
+               if v_0.Op != OpMod32 {
+                       break
+               }
+               t := v_0.Type
+               _ = v_0.Args[1]
+               n := v_0.Args[0]
+               v_0_1 := v_0.Args[1]
+               if v_0_1.Op != OpConst32 {
+                       break
+               }
+               c := v_0_1.AuxInt
+               v_1 := v.Args[1]
+               if v_1.Op != OpConst32 {
+                       break
+               }
+               if v_1.AuxInt != 0 {
+                       break
+               }
+               if !(n.Op != OpConst32 && isPowerOfTwo(c&0xffffffff)) {
+                       break
+               }
+               v.reset(OpEq32)
+               v0 := b.NewValue0(v.Pos, OpAnd32, t)
+               v0.AddArg(n)
+               v1 := b.NewValue0(v.Pos, OpConst32, t)
+               v1.AuxInt = (c & 0xffffffff) - 1
+               v0.AddArg(v1)
+               v.AddArg(v0)
+               v2 := b.NewValue0(v.Pos, OpConst32, t)
+               v2.AuxInt = 0
+               v.AddArg(v2)
+               return true
+       }
+       // match: (Eq32 (Const32 [0]) (Mod32 <t> n (Const32 [c])))
+       // cond: n.Op != OpConst32 && isPowerOfTwo(c&0xffffffff)
+       // result: (Eq32 (And32 <t> n (Const32 <t> [(c&0xffffffff)-1])) (Const32 <t> [0]))
+       for {
+               _ = v.Args[1]
+               v_0 := v.Args[0]
+               if v_0.Op != OpConst32 {
+                       break
+               }
+               if v_0.AuxInt != 0 {
+                       break
+               }
+               v_1 := v.Args[1]
+               if v_1.Op != OpMod32 {
+                       break
+               }
+               t := v_1.Type
+               _ = v_1.Args[1]
+               n := v_1.Args[0]
+               v_1_1 := v_1.Args[1]
+               if v_1_1.Op != OpConst32 {
+                       break
+               }
+               c := v_1_1.AuxInt
+               if !(n.Op != OpConst32 && isPowerOfTwo(c&0xffffffff)) {
+                       break
+               }
+               v.reset(OpEq32)
+               v0 := b.NewValue0(v.Pos, OpAnd32, t)
+               v0.AddArg(n)
+               v1 := b.NewValue0(v.Pos, OpConst32, t)
+               v1.AuxInt = (c & 0xffffffff) - 1
+               v0.AddArg(v1)
+               v.AddArg(v0)
+               v2 := b.NewValue0(v.Pos, OpConst32, t)
+               v2.AuxInt = 0
+               v.AddArg(v2)
+               return true
+       }
        // match: (Eq32 s:(Sub32 x y) (Const32 [0]))
        // cond: s.Uses == 1
        // result: (Eq32 x y)
                v.AddArg(y)
                return true
        }
+       return false
+}
+func rewriteValuegeneric_OpEq32_10(v *Value) bool {
        // match: (Eq32 (Const32 [0]) s:(Sub32 x y))
        // cond: s.Uses == 1
        // result: (Eq32 x y)
                v.AuxInt = b2i(c == d)
                return true
        }
+       // match: (Eq64 (Mod64 <t> n (Const64 [c])) (Const64 [0]))
+       // cond: n.Op != OpConst64 && isPowerOfTwo(c)
+       // result: (Eq64 (And64 <t> n (Const64 <t> [c-1])) (Const64 <t> [0]))
+       for {
+               _ = v.Args[1]
+               v_0 := v.Args[0]
+               if v_0.Op != OpMod64 {
+                       break
+               }
+               t := v_0.Type
+               _ = v_0.Args[1]
+               n := v_0.Args[0]
+               v_0_1 := v_0.Args[1]
+               if v_0_1.Op != OpConst64 {
+                       break
+               }
+               c := v_0_1.AuxInt
+               v_1 := v.Args[1]
+               if v_1.Op != OpConst64 {
+                       break
+               }
+               if v_1.AuxInt != 0 {
+                       break
+               }
+               if !(n.Op != OpConst64 && isPowerOfTwo(c)) {
+                       break
+               }
+               v.reset(OpEq64)
+               v0 := b.NewValue0(v.Pos, OpAnd64, t)
+               v0.AddArg(n)
+               v1 := b.NewValue0(v.Pos, OpConst64, t)
+               v1.AuxInt = c - 1
+               v0.AddArg(v1)
+               v.AddArg(v0)
+               v2 := b.NewValue0(v.Pos, OpConst64, t)
+               v2.AuxInt = 0
+               v.AddArg(v2)
+               return true
+       }
+       // match: (Eq64 (Const64 [0]) (Mod64 <t> n (Const64 [c])))
+       // cond: n.Op != OpConst64 && isPowerOfTwo(c)
+       // result: (Eq64 (And64 <t> n (Const64 <t> [c-1])) (Const64 <t> [0]))
+       for {
+               _ = v.Args[1]
+               v_0 := v.Args[0]
+               if v_0.Op != OpConst64 {
+                       break
+               }
+               if v_0.AuxInt != 0 {
+                       break
+               }
+               v_1 := v.Args[1]
+               if v_1.Op != OpMod64 {
+                       break
+               }
+               t := v_1.Type
+               _ = v_1.Args[1]
+               n := v_1.Args[0]
+               v_1_1 := v_1.Args[1]
+               if v_1_1.Op != OpConst64 {
+                       break
+               }
+               c := v_1_1.AuxInt
+               if !(n.Op != OpConst64 && isPowerOfTwo(c)) {
+                       break
+               }
+               v.reset(OpEq64)
+               v0 := b.NewValue0(v.Pos, OpAnd64, t)
+               v0.AddArg(n)
+               v1 := b.NewValue0(v.Pos, OpConst64, t)
+               v1.AuxInt = c - 1
+               v0.AddArg(v1)
+               v.AddArg(v0)
+               v2 := b.NewValue0(v.Pos, OpConst64, t)
+               v2.AuxInt = 0
+               v.AddArg(v2)
+               return true
+       }
        // match: (Eq64 s:(Sub64 x y) (Const64 [0]))
        // cond: s.Uses == 1
        // result: (Eq64 x y)
                v.AddArg(y)
                return true
        }
+       return false
+}
+func rewriteValuegeneric_OpEq64_10(v *Value) bool {
        // match: (Eq64 (Const64 [0]) s:(Sub64 x y))
        // cond: s.Uses == 1
        // result: (Eq64 x y)
                v.AuxInt = b2i(c == d)
                return true
        }
+       // match: (Eq8 (Mod8 <t> n (Const8 [c])) (Const8 [0]))
+       // cond: n.Op != OpConst8 && isPowerOfTwo(c&0xff)
+       // result: (Eq8 (And8 <t> n (Const8 <t> [(c&0xff)-1])) (Const8 <t> [0]))
+       for {
+               _ = v.Args[1]
+               v_0 := v.Args[0]
+               if v_0.Op != OpMod8 {
+                       break
+               }
+               t := v_0.Type
+               _ = v_0.Args[1]
+               n := v_0.Args[0]
+               v_0_1 := v_0.Args[1]
+               if v_0_1.Op != OpConst8 {
+                       break
+               }
+               c := v_0_1.AuxInt
+               v_1 := v.Args[1]
+               if v_1.Op != OpConst8 {
+                       break
+               }
+               if v_1.AuxInt != 0 {
+                       break
+               }
+               if !(n.Op != OpConst8 && isPowerOfTwo(c&0xff)) {
+                       break
+               }
+               v.reset(OpEq8)
+               v0 := b.NewValue0(v.Pos, OpAnd8, t)
+               v0.AddArg(n)
+               v1 := b.NewValue0(v.Pos, OpConst8, t)
+               v1.AuxInt = (c & 0xff) - 1
+               v0.AddArg(v1)
+               v.AddArg(v0)
+               v2 := b.NewValue0(v.Pos, OpConst8, t)
+               v2.AuxInt = 0
+               v.AddArg(v2)
+               return true
+       }
+       // match: (Eq8 (Const8 [0]) (Mod8 <t> n (Const8 [c])))
+       // cond: n.Op != OpConst8 && isPowerOfTwo(c&0xff)
+       // result: (Eq8 (And8 <t> n (Const8 <t> [(c&0xff)-1])) (Const8 <t> [0]))
+       for {
+               _ = v.Args[1]
+               v_0 := v.Args[0]
+               if v_0.Op != OpConst8 {
+                       break
+               }
+               if v_0.AuxInt != 0 {
+                       break
+               }
+               v_1 := v.Args[1]
+               if v_1.Op != OpMod8 {
+                       break
+               }
+               t := v_1.Type
+               _ = v_1.Args[1]
+               n := v_1.Args[0]
+               v_1_1 := v_1.Args[1]
+               if v_1_1.Op != OpConst8 {
+                       break
+               }
+               c := v_1_1.AuxInt
+               if !(n.Op != OpConst8 && isPowerOfTwo(c&0xff)) {
+                       break
+               }
+               v.reset(OpEq8)
+               v0 := b.NewValue0(v.Pos, OpAnd8, t)
+               v0.AddArg(n)
+               v1 := b.NewValue0(v.Pos, OpConst8, t)
+               v1.AuxInt = (c & 0xff) - 1
+               v0.AddArg(v1)
+               v.AddArg(v0)
+               v2 := b.NewValue0(v.Pos, OpConst8, t)
+               v2.AuxInt = 0
+               v.AddArg(v2)
+               return true
+       }
        // match: (Eq8 s:(Sub8 x y) (Const8 [0]))
        // cond: s.Uses == 1
        // result: (Eq8 x y)
                v.AddArg(y)
                return true
        }
+       return false
+}
+func rewriteValuegeneric_OpEq8_10(v *Value) bool {
        // match: (Eq8 (Const8 [0]) s:(Sub8 x y))
        // cond: s.Uses == 1
        // result: (Eq8 x y)
                return true
        }
        // match: (Mod16 <t> x (Const16 [c]))
-       // cond: x.Op != OpConst16 && (c > 0 || c == -1<<15)
+       // cond: x.Op != OpConst16 && (c > 0 || c == -1<<15) && v.Block.Func.pass.name != "opt"
        // result: (Sub16 x (Mul16 <t> (Div16 <t> x (Const16 <t> [c])) (Const16 <t> [c])))
        for {
                t := v.Type
                        break
                }
                c := v_1.AuxInt
-               if !(x.Op != OpConst16 && (c > 0 || c == -1<<15)) {
+               if !(x.Op != OpConst16 && (c > 0 || c == -1<<15) && v.Block.Func.pass.name != "opt") {
                        break
                }
                v.reset(OpSub16)
                return true
        }
        // match: (Mod32 <t> x (Const32 [c]))
-       // cond: x.Op != OpConst32 && (c > 0 || c == -1<<31)
+       // cond: x.Op != OpConst32 && (c > 0 || c == -1<<31) && v.Block.Func.pass.name != "opt"
        // result: (Sub32 x (Mul32 <t> (Div32 <t> x (Const32 <t> [c])) (Const32 <t> [c])))
        for {
                t := v.Type
                        break
                }
                c := v_1.AuxInt
-               if !(x.Op != OpConst32 && (c > 0 || c == -1<<31)) {
+               if !(x.Op != OpConst32 && (c > 0 || c == -1<<31) && v.Block.Func.pass.name != "opt") {
                        break
                }
                v.reset(OpSub32)
                return true
        }
        // match: (Mod64 <t> x (Const64 [c]))
-       // cond: x.Op != OpConst64 && (c > 0 || c == -1<<63)
+       // cond: x.Op != OpConst64 && (c > 0 || c == -1<<63) && v.Block.Func.pass.name != "opt"
        // result: (Sub64 x (Mul64 <t> (Div64 <t> x (Const64 <t> [c])) (Const64 <t> [c])))
        for {
                t := v.Type
                        break
                }
                c := v_1.AuxInt
-               if !(x.Op != OpConst64 && (c > 0 || c == -1<<63)) {
+               if !(x.Op != OpConst64 && (c > 0 || c == -1<<63) && v.Block.Func.pass.name != "opt") {
                        break
                }
                v.reset(OpSub64)
                return true
        }
        // match: (Mod8 <t> x (Const8 [c]))
-       // cond: x.Op != OpConst8 && (c > 0 || c == -1<<7)
+       // cond: x.Op != OpConst8 && (c > 0 || c == -1<<7) && v.Block.Func.pass.name != "opt"
        // result: (Sub8 x (Mul8 <t> (Div8 <t> x (Const8 <t> [c])) (Const8 <t> [c])))
        for {
                t := v.Type
                        break
                }
                c := v_1.AuxInt
-               if !(x.Op != OpConst8 && (c > 0 || c == -1<<7)) {
+               if !(x.Op != OpConst8 && (c > 0 || c == -1<<7) && v.Block.Func.pass.name != "opt") {
                        break
                }
                v.reset(OpSub8)
 
        "testing"
 )
 
+var boolres bool
+
 var i64res int64
 
 func BenchmarkDivconstI64(b *testing.B) {
        }
 }
 
+func BenchmarkDivisiblePow2constI64(b *testing.B) {
+       for i := 0; i < b.N; i++ {
+               boolres = int64(i)%16 == 0
+       }
+}
+
 var u64res uint64
 
 func BenchmarkDivconstU64(b *testing.B) {
        }
 }
 
+func BenchmarkDivisiblePow2constI32(b *testing.B) {
+       for i := 0; i < b.N; i++ {
+               boolres = int32(i)%16 == 0
+       }
+}
+
 var u32res uint32
 
 func BenchmarkDivconstU32(b *testing.B) {
        }
 }
 
+func BenchmarkDivisiblePow2constI16(b *testing.B) {
+       for i := 0; i < b.N; i++ {
+               boolres = int16(i)%16 == 0
+       }
+}
+
 var u16res uint16
 
 func BenchmarkDivconstU16(b *testing.B) {
        }
 }
 
+func BenchmarkDivisiblePow2constI8(b *testing.B) {
+       for i := 0; i < b.N; i++ {
+               boolres = int8(i)%16 == 0
+       }
+}
+
 var u8res uint8
 
 func BenchmarkDivconstU8(b *testing.B) {
 
        return a, b
 }
 
+// Check that signed divisibility checks get converted to AND on low bits
+func Pow2DivisibleSigned(n int) bool {
+       // 386:"TESTL\t[$]63",-"DIVL"
+       // amd64:"TESTQ\t[$]63",-"DIVQ"
+       // arm:"AND\t[$]63",-".*udiv"
+       // arm64:"AND\t[$]63",-"UDIV"
+       // ppc64:"ANDCC\t[$]63"
+       // ppc64le:"ANDCC\t[$]63"
+       return n%64 == 0 // signed
+}
+
 // Check that constant modulo divs get turned into MULs
 func ConstMods(n1 uint, n2 int) (uint, int) {
        // amd64:"MOVQ\t[$]-1085102592571150095","MULQ",-"DIVQ"