}
// Same as above, but calling from the runtime is allowed.
+//
+// Using this function is necessary for any panic that may be
+// generated by runtime.sigpanic, since those are always called by the
+// runtime.
func panicCheck2(err string) {
+ // panic allocates, so to avoid recursive malloc, turn panics
+ // during malloc into throws.
gp := getg()
if gp != nil && gp.m != nil && gp.m.mallocing != 0 {
throw(err)
}
}
+// Many of the following panic entry-points turn into throws when they
+// happen in various runtime contexts. These should never happen in
+// the runtime, and if they do, they indicate a serious issue and
+// should not be caught by user code.
+//
// The panic{Index,Slice,divide,shift} functions are called by
// code generated by the compiler for out of bounds index expressions,
// out of bounds slice expressions, division by zero, and shift by negative.
// runtime package we turn the panic into a throw. That will dump the
// entire runtime stack for easier debugging.
//
+// The entry points called by the signal handler will be called from
+// runtime.sigpanic, so we can't disallow calls from the runtime to
+// these (they always look like they're called from the runtime).
+// Hence, for these, we just check for clearly bad runtime conditions.
+//
// The panic{Index,Slice} functions are implemented in assembly and tail call
// to the goPanic{Index,Slice} functions below. This is done so we can use
// a space-minimal register calling convention.