// References:
// [NSA]: Suite B implementor's guide to FIPS 186-3,
// http://www.nsa.gov/ia/_files/ecdsa.pdf
+// [SECG]: SECG, SEC1
+// http://www.secg.org/download/aid-780/sec1-v2.pdf
import (
"big"
return
}
+// hashToInt converts a hash value to an integer. There is some disagreement
+// about how this is done. [NSA] suggests that this is done in the obvious
+// manner, but [SECG] truncates the hash to the bit-length of the curve order
+// first. We follow [SECG] because that's what OpenSSL does.
+func hashToInt(hash []byte, c *elliptic.Curve) *big.Int {
+ orderBits := c.N.BitLen()
+ orderBytes := (orderBits + 7) / 8
+ if len(hash) > orderBytes {
+ hash = hash[:orderBytes]
+ }
+
+ ret := new(big.Int).SetBytes(hash)
+ excess := orderBytes*8 - orderBits
+ if excess > 0 {
+ ret.Rsh(ret, uint(excess))
+ }
+ return ret
+}
+
// Sign signs an arbitrary length hash (which should be the result of hashing a
// larger message) using the private key, priv. It returns the signature as a
// pair of integers. The security of the private key depends on the entropy of
}
}
- e := new(big.Int).SetBytes(hash)
+ e := hashToInt(hash, c)
s = new(big.Int).Mul(priv.D, r)
s.Add(s, e)
s.Mul(s, kInv)
if r.Cmp(c.N) >= 0 || s.Cmp(c.N) >= 0 {
return false
}
- e := new(big.Int).SetBytes(hash)
+ e := hashToInt(hash, c)
w := new(big.Int).ModInverse(s, c.N)
u1 := e.Mul(e, w)