// Decrypter and Signer interfaces from the crypto package.
//
// Operations involving private keys are implemented using constant-time
-// algorithms, except for [GenerateKey], [PrivateKey.Precompute], and
-// [PrivateKey.Validate].
+// algorithms, except for [GenerateKey] and [PrivateKey.Precompute].
//
// # Minimum key size
//
return errors.New("crypto/rsa: public exponent too large")
}
- // Check that Πprimes == n.
- modulus := new(big.Int).Set(bigOne)
- for _, prime := range priv.Primes {
- // Any primes ≤ 1 will cause divide-by-zero panics later.
- if prime.Cmp(bigOne) <= 0 {
- return errors.New("crypto/rsa: invalid prime value")
- }
- modulus.Mul(modulus, prime)
+ N, err := bigmod.NewModulus(pub.N.Bytes())
+ if err != nil {
+ return fmt.Errorf("crypto/rsa: invalid public modulus: %v", err)
}
- if modulus.Cmp(priv.N) != 0 {
- return errors.New("crypto/rsa: invalid modulus")
+ d, err := bigmod.NewNat().SetBytes(priv.D.Bytes(), N)
+ if err != nil {
+ return fmt.Errorf("crypto/rsa: invalid private exponent: %v", err)
+ }
+ one, err := bigmod.NewNat().SetUint(1, N)
+ if err != nil {
+ return fmt.Errorf("crypto/rsa: internal error: %v", err)
}
- // Check that de ≡ 1 mod p-1, for each prime.
- // This implies that e is coprime to each p-1 as e has a multiplicative
- // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
- // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
- // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
- congruence := new(big.Int)
- de := new(big.Int).SetInt64(int64(priv.E))
- de.Mul(de, priv.D)
+ Π := bigmod.NewNat().ExpandFor(N)
for _, prime := range priv.Primes {
- pminus1 := new(big.Int).Sub(prime, bigOne)
- congruence.Mod(de, pminus1)
- if congruence.Cmp(bigOne) != 0 {
+ p, err := bigmod.NewNat().SetBytes(prime.Bytes(), N)
+ if err != nil {
+ return fmt.Errorf("crypto/rsa: invalid prime: %v", err)
+ }
+ if p.IsZero() == 1 {
+ return errors.New("crypto/rsa: invalid prime")
+ }
+ Π.Mul(p, N)
+
+ // Check that de ≡ 1 mod p-1, for each prime.
+ // This implies that e is coprime to each p-1 as e has a multiplicative
+ // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) =
+ // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1
+ // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required.
+
+ p.Sub(one, N)
+ if p.IsZero() == 1 {
+ return errors.New("crypto/rsa: invalid prime")
+ }
+ pMinus1, err := bigmod.NewModulus(p.Bytes(N))
+ if err != nil {
+ return fmt.Errorf("crypto/rsa: internal error: %v", err)
+ }
+
+ e, err := bigmod.NewNat().SetUint(uint(pub.E), pMinus1)
+ if err != nil {
+ return fmt.Errorf("crypto/rsa: invalid public exponent: %v", err)
+ }
+ one, err := bigmod.NewNat().SetUint(1, pMinus1)
+ if err != nil {
+ return fmt.Errorf("crypto/rsa: internal error: %v", err)
+ }
+
+ de := bigmod.NewNat()
+ de.Mod(d, pMinus1)
+ de.Mul(e, pMinus1)
+ de.Sub(one, pMinus1)
+ if de.IsZero() != 1 {
return errors.New("crypto/rsa: invalid exponents")
}
}
+ // Check that Πprimes == n.
+ if Π.IsZero() != 1 {
+ return errors.New("crypto/rsa: invalid modulus")
+ }
+
return nil
}
}
priv.Precompute()
+ if err := priv.Validate(); err != nil {
+ return nil, err
+ }
+
return priv, nil
}
}
func TestImpossibleKeyGeneration(t *testing.T) {
- // This test ensures that trying to generate toy RSA keys doesn't enter
- // an infinite loop.
+ // This test ensures that trying to generate or validate toy RSA keys
+ // doesn't enter an infinite loop or panic.
t.Setenv("GODEBUG", "rsa1024min=0")
- for i := 0; i < 32; i++ {
+ for i := 0; i < 128; i++ {
GenerateKey(rand.Reader, i)
GenerateMultiPrimeKey(rand.Reader, 3, i)
GenerateMultiPrimeKey(rand.Reader, 4, i)
}
t.Setenv("GODEBUG", "rsa1024min=0")
- min := 32
+ min := 128
max := 560 // any smaller than this and not all tests will run
if *allFlag {
max = 2048