-7.3924135157173099849e-01,
}
-// Inputs to test trig_reduce
-var trigHuge = []float64{
- 1 << 120,
- 1 << 240,
- 1 << 480,
- 1234567891234567 << 180,
- 1234567891234567 << 300,
- MaxFloat64,
-}
-
-// Results for trigHuge[i] calculated with https://github.com/robpike/ivy
-// using 4096 bits of working precision. Values requiring less than
-// 102 decimal digits (1 << 120, 1 << 240, 1 << 480, 1234567891234567 << 180)
-// were confirmed via https://keisan.casio.com/
-var cosHuge = []float64{
- -0.92587902285483787,
- 0.93601042593353793,
- -0.28282777640193788,
- -0.14616431394103619,
- -0.79456058210671406,
- -0.99998768942655994,
-}
-
-var sinHuge = []float64{
- 0.37782010936075202,
- -0.35197227524865778,
- 0.95917070894368716,
- 0.98926032637023618,
- -0.60718488235646949,
- 0.00496195478918406,
-}
-
-var tanHuge = []float64{
- -0.40806638884180424,
- -0.37603456702698076,
- -3.39135965054779932,
- -6.76813854009065030,
- 0.76417695016604922,
- -0.00496201587444489,
-}
-
var cosh = []float64{
7.2668796942212842775517446e+01,
1.1479413465659254502011135e+03,
}
}
-// Check that trig values of huge angles return accurate results.
-// This confirms that argument reduction works for very large values
-// up to MaxFloat64.
-func TestHugeCos(t *testing.T) {
- for i := 0; i < len(trigHuge); i++ {
- f1 := cosHuge[i]
- f2 := Cos(trigHuge[i])
- if !close(f1, f2) {
- t.Errorf("Cos(%g) = %g, want %g", trigHuge[i], f2, f1)
- }
- }
-}
-
-func TestHugeSin(t *testing.T) {
- for i := 0; i < len(trigHuge); i++ {
- f1 := sinHuge[i]
- f2 := Sin(trigHuge[i])
- if !close(f1, f2) {
- t.Errorf("Sin(%g) = %g, want %g", trigHuge[i], f2, f1)
- }
- }
-}
-
-func TestHugeSinCos(t *testing.T) {
- for i := 0; i < len(trigHuge); i++ {
- f1, g1 := sinHuge[i], cosHuge[i]
- f2, g2 := Sincos(trigHuge[i])
- if !close(f1, f2) || !close(g1, g2) {
- t.Errorf("Sincos(%g) = %g, %g, want %g, %g", trigHuge[i], f2, g2, f1, g1)
- }
- }
-}
-
-func TestHugeTan(t *testing.T) {
- for i := 0; i < len(trigHuge); i++ {
- f1 := tanHuge[i]
- f2 := Tan(trigHuge[i])
- if !close(f1, f2) {
- t.Errorf("Tan(%g) = %g, want %g", trigHuge[i], f2, f1)
- }
- }
-}
-
// Check that math constants are accepted by compiler
// and have right value (assumes strconv.ParseFloat works).
// https://golang.org/issue/201
--- /dev/null
+// Copyright 2018 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// Disabled for s390x because it uses assembly routines that are not
+// accurate for huge arguments.
+
+// +build !s390x
+
+package math_test
+
+import (
+ . "math"
+ "testing"
+)
+
+// Inputs to test trig_reduce
+var trigHuge = []float64{
+ 1 << 120,
+ 1 << 240,
+ 1 << 480,
+ 1234567891234567 << 180,
+ 1234567891234567 << 300,
+ MaxFloat64,
+}
+
+// Results for trigHuge[i] calculated with https://github.com/robpike/ivy
+// using 4096 bits of working precision. Values requiring less than
+// 102 decimal digits (1 << 120, 1 << 240, 1 << 480, 1234567891234567 << 180)
+// were confirmed via https://keisan.casio.com/
+var cosHuge = []float64{
+ -0.92587902285483787,
+ 0.93601042593353793,
+ -0.28282777640193788,
+ -0.14616431394103619,
+ -0.79456058210671406,
+ -0.99998768942655994,
+}
+
+var sinHuge = []float64{
+ 0.37782010936075202,
+ -0.35197227524865778,
+ 0.95917070894368716,
+ 0.98926032637023618,
+ -0.60718488235646949,
+ 0.00496195478918406,
+}
+
+var tanHuge = []float64{
+ -0.40806638884180424,
+ -0.37603456702698076,
+ -3.39135965054779932,
+ -6.76813854009065030,
+ 0.76417695016604922,
+ -0.00496201587444489,
+}
+
+// Check that trig values of huge angles return accurate results.
+// This confirms that argument reduction works for very large values
+// up to MaxFloat64.
+func TestHugeCos(t *testing.T) {
+ for i := 0; i < len(trigHuge); i++ {
+ f1 := cosHuge[i]
+ f2 := Cos(trigHuge[i])
+ if !close(f1, f2) {
+ t.Errorf("Cos(%g) = %g, want %g", trigHuge[i], f2, f1)
+ }
+ }
+}
+
+func TestHugeSin(t *testing.T) {
+ for i := 0; i < len(trigHuge); i++ {
+ f1 := sinHuge[i]
+ f2 := Sin(trigHuge[i])
+ if !close(f1, f2) {
+ t.Errorf("Sin(%g) = %g, want %g", trigHuge[i], f2, f1)
+ }
+ }
+}
+
+func TestHugeSinCos(t *testing.T) {
+ for i := 0; i < len(trigHuge); i++ {
+ f1, g1 := sinHuge[i], cosHuge[i]
+ f2, g2 := Sincos(trigHuge[i])
+ if !close(f1, f2) || !close(g1, g2) {
+ t.Errorf("Sincos(%g) = %g, %g, want %g, %g", trigHuge[i], f2, g2, f1, g1)
+ }
+ }
+}
+
+func TestHugeTan(t *testing.T) {
+ for i := 0; i < len(trigHuge); i++ {
+ f1 := tanHuge[i]
+ f2 := Tan(trigHuge[i])
+ if !close(f1, f2) {
+ t.Errorf("Tan(%g) = %g, want %g", trigHuge[i], f2, f1)
+ }
+ }
+}