// TODO(gri) test denormals, +/-Inf, disallow NaN.
func (z *Float) SetFloat64(x float64) *Float {
z.prec = 53
+ z.neg = math.Signbit(x) // handle -0 correctly (-0 == 0)
if x == 0 {
- z.neg = false
z.mant = z.mant[:0]
z.exp = 0
return z
}
- z.neg = x < 0
fmant, exp := math.Frexp(x) // get normalized mantissa
z.mant = z.mant.setUint64(1<<63 | math.Float64bits(fmant)<<11)
z.exp = int32(exp)
}
func high64(x nat) uint64 {
- i := len(x) - 1
- if i < 0 {
+ i := len(x)
+ if i == 0 {
return 0
}
- v := uint64(x[i])
+ // i > 0
+ v := uint64(x[i-1])
if _W == 32 {
v <<= 32
- if i > 0 {
- v |= uint64(x[i-1])
+ if i > 1 {
+ v |= uint64(x[i-2])
}
}
return v
return 1
}
-// pstring returns x as a string in the format ["-"] "0." mantissa "p" exponent
-// with a hexadecimal mantissa and a decimal exponent, or ["-"] "0" if x is zero.
-func (x *Float) pstring() string {
- // TODO(gri) handle Inf
- var buf bytes.Buffer
- if x.neg {
- buf.WriteByte('-')
- }
- buf.WriteByte('0')
- if len(x.mant) > 0 {
- // non-zero value
- buf.WriteByte('.')
- buf.WriteString(strings.TrimRight(x.mant.string(lowercaseDigits[:16]), "0"))
- fmt.Fprintf(&buf, "p%d", x.exp)
- }
- return buf.String()
-}
-
// SetString sets z to the value of s and returns z and a boolean indicating
-// success. s must be a floating-point number of the form:
-//
-// number = [ sign ] mantissa [ exponent ] .
-// mantissa = digits | digits "." [ digits ] | "." digits .
-// exponent = ( "E" | "e" | "p" ) [ sign ] digits .
-// sign = "+" | "-" .
-// digits = digit { digit } .
-// digit = "0" ... "9" .
-//
-// A "p" exponent indicates power of 2 for the exponent; for instance 1.2p3
-// is 1.2 * 2**3. If the operation failed, the value of z is undefined but
-// the returned value is nil.
-//
+// success. s must be a floating-point number of the same format as accepted
+// by Scan, with number prefixes permitted.
func (z *Float) SetString(s string) (*Float, bool) {
r := strings.NewReader(s)
- f, err := z.scan(r)
+ f, _, err := z.Scan(r, 0)
if err != nil {
return nil, false
}
return f, true
}
-// scan sets z to the value of the longest prefix of r representing
-// a floating-point number and returns z or an error, if any.
-// The number must be of the form:
+// Scan scans the number corresponding to the longest possible prefix
+// of r representing a floating-point number with a mantissa in the
+// given conversion base (the exponent is always a decimal number).
+// It returns the corresponding Float f, the actual base b, and an
+// error err, if any. The number must be of the form:
//
-// number = [ sign ] mantissa [ exponent ] .
+// number = [ sign ] [ prefix ] mantissa [ exponent ] .
+// sign = "+" | "-" .
+// prefix = "0" ( "x" | "X" | "b" | "B" ) .
// mantissa = digits | digits "." [ digits ] | "." digits .
// exponent = ( "E" | "e" | "p" ) [ sign ] digits .
-// sign = "+" | "-" .
// digits = digit { digit } .
-// digit = "0" ... "9" .
+// digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
+//
+// The base argument must be 0 or a value between 2 through MaxBase.
+//
+// For base 0, the number prefix determines the actual base: A prefix of
+// ``0x'' or ``0X'' selects base 16, and a ``0b'' or ``0B'' prefix selects
+// base 2; otherwise, the actual base is 10 and no prefix is permitted.
+// The octal prefix ``0'' is not supported.
//
-// A "p" exponent indicates power of 2 for the exponent; for instance 1.2p3
-// is 1.2 * 2**3. If the operation failed, the value of z is undefined but
-// the returned value is nil.
+// A "p" exponent indicates power of 2 for the exponent; for instance "1.2p3"
+// with base 0 or 10 corresponds to the value 1.2 * 2**3.
//
-func (z *Float) scan(r io.ByteScanner) (f *Float, err error) {
+// BUG(gri) This signature conflicts with Scan(s fmt.ScanState, ch rune) error.
+func (z *Float) Scan(r io.ByteScanner, base int) (f *Float, b int, err error) {
// sign
z.neg, err = scanSign(r)
if err != nil {
// mantissa
var ecorr int // decimal exponent correction; valid if <= 0
- z.mant, _, ecorr, err = z.mant.scan(r, 1)
+ z.mant, b, ecorr, err = z.mant.scan(r, base, true)
if err != nil {
return
}
// special-case 0
if len(z.mant) == 0 {
z.exp = 0
- return z, nil
+ f = z
+ return
}
// len(z.mant) > 0
if exp == 0 {
// no decimal exponent
z.round(0)
- return z, nil
+ f = z
+ return
}
// exp != 0
z.umul(z, powTen)
}
- return z, nil
-}
-
-// Scan scans the number corresponding to the longest possible prefix
-// of r representing a floating-point number with a mantissa in the
-// given conversion base (the exponent is always a decimal number).
-// It returns the corresponding Float f, the actual base b, and an
-// error err, if any. The number must be of the form:
-//
-// number = [ prefix ] [ sign ] mantissa [ exponent ] .
-// mantissa = digits | digits "." [ digits ] | "." digits .
-// prefix = prefix = "0" ( "x" | "X" | "b" | "B" ) .
-// sign = "+" | "-" .
-// exponent = ( "E" | "e" | "p" ) [ sign ] digits .
-// digits = digit { digit } .
-// digit = digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
-//
-// The base argument must be 0 or a value between 2 and MaxBase, inclusive.
-//
-// For base 0, the number prefix determines the actual base: A prefix of
-// ``0x'' or ``0X'' selects base 16, and a ``0b'' or ``0B'' prefix selects
-// base 2; otherwise, the actual base is 10 and no prefix is permitted.
-// Note that the octal prefix ``0'' is not supported.
-//
-// A "p" exponent indicates power of 2 for the exponent; for instance "1.2p3"
-// with base 0 or 10 corresponds to the value 1.2 * 2**3.
-//
-// BUG(gri) Currently, Scan only accepts base 10.
-func (z *Float) Scan(r io.ByteScanner, base int) (f *Float, b int, err error) {
- if base != 10 {
- err = fmt.Errorf("base %d not supported yet", base)
- return
- }
- b = 10
- f, err = z.scan(r)
+ f = z
return
}
}
// Format converts the floating-point number x to a string according
-// to the given format and precision prec.
+// to the given format and precision prec. The format is one of:
//
-// The format is one of
-// 'e' (-d.dddde±dd, decimal exponent),
-// 'E' (-d.ddddE±dd, decimal exponent),
-// 'f' (-ddddd.dddd, no exponent),
-// 'g' ('e' for large exponents, 'f' otherwise),
-// 'G' ('E' for large exponents, 'f' otherwise),
-// 'b' (-ddddddp±dd, binary exponent), or
-// 'p' (-0.ddddp±dd, hexadecimal mantissa, binary exponent).
+// 'e' -d.dddde±dd, decimal exponent
+// 'E' -d.ddddE±dd, decimal exponent
+// 'f' -ddddd.dddd, no exponent
+// 'g' like 'e' for large exponents, like 'f' otherwise
+// 'G' like 'E' for large exponents, like 'f' otherwise
+// 'b' -ddddddp±dd, binary exponent
+// 'p' -0x.dddp±dd, binary exponent, hexadecimal mantissa
+//
+// For the binary exponent formats, the mantissa is printed in normalized form:
+//
+// 'b' decimal integer mantissa using x.Precision() bits, or -0
+// 'p' hexadecimal fraction with 0.5 <= 0.mantissa < 1.0, or -0
//
// The precision prec controls the number of digits (excluding the exponent)
// printed by the 'e', 'E', 'f', 'g', and 'G' formats. For 'e', 'E', and 'f'
// number of digits necessary such that ParseFloat will return f exactly.
// The prec value is ignored for the 'b' or 'p' format.
//
-// BUG(gri) Currently, Format only accepts the 'p' format.
+// BUG(gri) Currently, Format only accepts the 'b' and 'p' format.
func (x *Float) Format(format byte, prec int) string {
- if format != 'p' {
- return fmt.Sprintf(`%c`, format)
+ switch format {
+ case 'b':
+ return x.bstring()
+ case 'p':
+ return x.pstring()
}
- return x.pstring()
+ return fmt.Sprintf(`%%!c(%s)`, format, x.pstring())
}
// BUG(gri): Currently, String uses the 'p' (rather than 'g') format.
func (x *Float) String() string {
return x.Format('p', 0)
}
+
+// TODO(gri) The 'b' and 'p' formats have different meanings here than
+// in strconv: in strconv, the printed exponent is the biased (hardware)
+// exponent; here it is the unbiased exponent. Decide what to do.
+// (a strconv 'p' formatted float value can only be interpreted correctly
+// if the bias is known; i.e., we must know if it's a 32bit or 64bit number).
+
+// bstring returns x as a string in the format ["-"] mantissa "p" exponent
+// with a decimal mantissa and a binary exponent, or ["-"] "0" if x is zero.
+// The mantissa is normalized such that is uses x.Precision() bits in binary
+// representation.
+func (x *Float) bstring() string {
+ // TODO(gri) handle Inf
+ if len(x.mant) == 0 {
+ if x.neg {
+ return "-0"
+ }
+ return "0"
+ }
+ // x != 0
+ // normalize mantissa
+ m := x.mant
+ t := uint(len(x.mant)*_W) - x.prec // 0 <= t < _W
+ if t > 0 {
+ m = nat(nil).shr(m, t)
+ }
+ var buf bytes.Buffer
+ if x.neg {
+ buf.WriteByte('-')
+ }
+ buf.WriteString(m.decimalString())
+ fmt.Fprintf(&buf, "p%d", x.exp)
+ return buf.String()
+}
+
+// pstring returns x as a string in the format ["-"] "0x." mantissa "p" exponent
+// with a hexadecimal mantissa and a binary exponent, or ["-"] "0" if x is zero.
+// The mantissa is normalized such that 0.5 <= 0.mantissa < 1.0.
+func (x *Float) pstring() string {
+ // TODO(gri) handle Inf
+ if len(x.mant) == 0 {
+ if x.neg {
+ return "-0"
+ }
+ return "0"
+ }
+ // x != 0
+ // mantissa is stored in normalized form
+ var buf bytes.Buffer
+ if x.neg {
+ buf.WriteByte('-')
+ }
+ buf.WriteString("0x.")
+ buf.WriteString(strings.TrimRight(x.mant.hexString(), "0"))
+ fmt.Fprintf(&buf, "p%d", x.exp)
+ return buf.String()
+}
// TestFloatRound tests basic rounding.
func TestFloatRound(t *testing.T) {
- var tests = []struct {
+ for _, test := range []struct {
prec uint
x, zero, neven, naway, away string // input, results rounded to prec bits
}{
{1, "1101001", "1000000", "10000000", "10000000", "10000000"},
{1, "1110001", "1000000", "10000000", "10000000", "10000000"},
{1, "1111001", "1000000", "10000000", "10000000", "10000000"},
- }
-
- for _, test := range tests {
+ } {
x := fromBinary(test.x)
z := fromBinary(test.zero)
e := fromBinary(test.neven)
}
func TestFloatSetUint64(t *testing.T) {
- var tests = []uint64{
+ for _, want := range []uint64{
0,
1,
2,
1<<32 - 1,
1 << 32,
1<<64 - 1,
- }
- for _, want := range tests {
+ } {
f := new(Float).SetUint64(want)
if got := f.Uint64(); got != want {
t.Errorf("got %d (%s); want %d", got, f.pstring(), want)
}
func TestFloatSetInt64(t *testing.T) {
- var tests = []int64{
+ for _, want := range []int64{
0,
1,
2,
1<<32 - 1,
1 << 32,
1<<63 - 1,
- }
- for _, want := range tests {
+ } {
for i := range [2]int{} {
if i&1 != 0 {
want = -want
}
func TestFloatSetFloat64(t *testing.T) {
- var tests = []float64{
+ for _, want := range []float64{
0,
1,
2,
3.14159265e10,
2.718281828e-123,
1.0 / 3,
- }
- for _, want := range tests {
+ } {
for i := range [2]int{} {
if i&1 != 0 {
want = -want
// TestFloatMul64 tests that Float.Mul/Quo of numbers with
// 53bit mantissa behaves like float64 multiplication/division.
func TestFloatMul64(t *testing.T) {
- var tests = []struct {
+ for _, test := range []struct {
x, y float64
}{
{0, 0},
{2.718281828, 3.14159265358979},
{2.718281828e10, 3.14159265358979e-32},
{1.0 / 3, 1e200},
- }
- for _, test := range tests {
+ } {
for i := range [8]int{} {
x0, y0 := test.x, test.y
if i&1 != 0 {
}
func TestNormBits(t *testing.T) {
- var tests = []struct {
+ for _, test := range []struct {
x, want []int
}{
{nil, nil},
{[]int{0, 0}, []int{1}},
{[]int{3, 1, 1}, []int{2, 3}},
{[]int{10, 9, 8, 7, 6, 6}, []int{11}},
- }
-
- for _, test := range tests {
+ } {
got := fmt.Sprintf("%v", normBits(test.x))
want := fmt.Sprintf("%v", test.want)
if got != want {
}
func TestFromBits(t *testing.T) {
- var tests = []struct {
+ for _, test := range []struct {
bits []int
want string
}{
// all different bit numbers
{nil, "0"},
- {[]int{0}, "0.8p1"},
- {[]int{1}, "0.8p2"},
- {[]int{-1}, "0.8p0"},
- {[]int{63}, "0.8p64"},
- {[]int{33, -30}, "0.8000000000000001p34"},
- {[]int{255, 0}, "0.8000000000000000000000000000000000000000000000000000000000000001p256"},
+ {[]int{0}, "0x.8p1"},
+ {[]int{1}, "0x.8p2"},
+ {[]int{-1}, "0x.8p0"},
+ {[]int{63}, "0x.8p64"},
+ {[]int{33, -30}, "0x.8000000000000001p34"},
+ {[]int{255, 0}, "0x.8000000000000000000000000000000000000000000000000000000000000001p256"},
// multiple equal bit numbers
- {[]int{0, 0}, "0.8p2"},
- {[]int{0, 0, 0, 0}, "0.8p3"},
- {[]int{0, 1, 0}, "0.8p3"},
- {append([]int{2, 1, 0} /* 7 */, []int{3, 1} /* 10 */ ...), "0.88p5" /* 17 */},
- }
-
- for _, test := range tests {
+ {[]int{0, 0}, "0x.8p2"},
+ {[]int{0, 0, 0, 0}, "0x.8p3"},
+ {[]int{0, 1, 0}, "0x.8p3"},
+ {append([]int{2, 1, 0} /* 7 */, []int{3, 1} /* 10 */ ...), "0x.88p5" /* 17 */},
+ } {
f := fromBits(test.bits...)
if got := f.pstring(); got != test.want {
t.Errorf("setBits(%v) = %s; want %s", test.bits, got, test.want)
}
}
-func TestFloatpstring(t *testing.T) {
- var tests = []struct {
- x Float
- want string
+func TestFloatFormat(t *testing.T) {
+ for _, test := range []struct {
+ x string
+ format byte
+ prec int
+ want string
}{
- {Float{}, "0"},
- {Float{neg: true}, "-0"},
- {Float{mant: nat{0x87654321}}, "0.87654321p0"},
- {Float{mant: nat{0x87654321}, exp: -10}, "0.87654321p-10"},
- }
- for _, test := range tests {
- if got := test.x.pstring(); got != test.want {
- t.Errorf("%v: got %s; want %s", test.x, got, test.want)
+ {"0", 'b', 0, "0"},
+ {"-0", 'b', 0, "-0"},
+ {"1.0", 'b', 0, "4503599627370496p1"},
+ {"-1.0", 'b', 0, "-4503599627370496p1"},
+
+ {"0", 'p', 0, "0"},
+ {"-0", 'p', 0, "-0"},
+ {"1024.0", 'p', 0, "0x.8p11"},
+ {"-1024.0", 'p', 0, "-0x.8p11"},
+ } {
+ f64, err := strconv.ParseFloat(test.x, 64)
+ if err != nil {
+ t.Error(err)
+ continue
+ }
+ f := new(Float).SetFloat64(f64)
+ got := f.Format(test.format, test.prec)
+ if got != test.want {
+ t.Errorf("%v: got %s", test, got)
+ }
+ if test.format == 'b' || test.format == 'p' {
+ continue // 'b', 'p' format not supported or different in strconv.Format
+ }
+ want := strconv.FormatFloat(f64, test.format, test.prec, 64)
+ if got != want {
+ t.Errorf("%v: got %s; want %s", test, got, want)
}
}
}
}
// determine mantissa
- z.abs, base, _, err = z.abs.scan(r, base)
+ z.abs, base, _, err = z.abs.scan(r, base, false)
if err != nil {
return nil, base, err
}
// It returns the corresponding natural number res, the actual base b,
// a digit count, and an error err, if any.
//
-// number = [ prefix ] digits | digits "." [ digits ] | "." digits .
-// prefix = "0" [ "x" | "X" | "b" | "B" ] .
-// digits = digit { digit } .
-// digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
+// number = [ prefix ] mantissa .
+// prefix = "0" [ "x" | "X" | "b" | "B" ] .
+// mantissa = digits | digits "." [ digits ] | "." digits .
+// digits = digit { digit } .
+// digit = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
+//
+// The base argument must be 0 or a value between 0 through MaxBase.
//
-// The base argument must be a value between 0 and MaxBase (inclusive).
// For base 0, the number prefix determines the actual base: A prefix of
-// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and
-// a ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base
-// is 10 and no prefix is permitted.
+// ``0x'' or ``0X'' selects base 16; if fracOk is not set, the ``0'' prefix
+// selects base 8, and a ``0b'' or ``0B'' prefix selects base 2. Otherwise
+// the selected base is 10 and no prefix is permitted.
//
-// Base argument 1 selects actual base 10 but also enables scanning a number
-// with a decimal point.
+// If fracOk is set, an octal prefix is ignored (a leading ``0'' simply
+// stands for a zero digit), and a period followed by a fractional part
+// is permitted. The result value is computed as if there were no period
+// present; and the count value is used to determine the fractional part.
//
// A result digit count > 0 corresponds to the number of (non-prefix) digits
-// parsed. A digit count <= 0 indicates the presence of a decimal point (for
-// base == 1, only), and the number of fractional digits is -count. In this
-// case, the value of the scanned number is res * 10**count.
+// parsed. A digit count <= 0 indicates the presence of a period (if fracOk
+// is set, only), and -count is the number of fractional digits found.
+// In this case, the value of the scanned number is res * 10**count.
//
-func (z nat) scan(r io.ByteScanner, base int) (res nat, b, count int, err error) {
+func (z nat) scan(r io.ByteScanner, base int, fracOk bool) (res nat, b, count int, err error) {
// reject illegal bases
- if base < 0 || base > MaxBase {
+ if base != 0 && base < 2 || base > MaxBase {
err = errors.New("illegal number base")
return
}
}
// determine actual base
- switch base {
- case 0:
+ b = base
+ if base == 0 {
// actual base is 10 unless there's a base prefix
b = 10
if ch == '0' {
+ count = 1
switch ch, err = r.ReadByte(); err {
case nil:
// possibly one of 0x, 0X, 0b, 0B
- b = 8
+ if !fracOk {
+ b = 8
+ }
switch ch {
case 'x', 'X':
b = 16
case 'b', 'B':
b = 2
}
- if b == 2 || b == 16 {
+ switch b {
+ case 16, 2:
+ count = 0 // prefix is not counted
if ch, err = r.ReadByte(); err != nil {
// io.EOF is also an error in this case
return
}
+ case 8:
+ count = 0 // prefix is not counted
}
case io.EOF:
// input is "0"
res = z[:0]
- count = 1
err = nil
return
default:
return
}
}
- case 1:
- // actual base is 10 and decimal point is permitted
- b = 10
- default:
- b = base
}
// convert string
i := 0 // 0 <= i < n
dp := -1 // position of decimal point
for {
- if base == 1 && ch == '.' {
- base = 10 // no 2nd decimal point permitted
+ if fracOk && ch == '.' {
+ fracOk = false
dp = count
// advance
if ch, err = r.ReadByte(); err != nil {
}
func natFromString(s string) nat {
- x, _, _, err := nat(nil).scan(strings.NewReader(s), 0)
+ x, _, _, err := nat(nil).scan(strings.NewReader(s), 0, false)
if err != nil {
panic(err)
}
t.Errorf("string%+v\n\tgot s = %s; want %s", a, s, a.s)
}
- x, b, _, err := nat(nil).scan(strings.NewReader(a.s), len(a.c))
+ x, b, _, err := nat(nil).scan(strings.NewReader(a.s), len(a.c), false)
if x.cmp(a.x) != 0 {
t.Errorf("scan%+v\n\tgot z = %v; want %v", a, x, a.x)
}
var natScanTests = []struct {
s string // string to be scanned
base int // input base
+ frac bool // fraction ok
x nat // expected nat
b int // expected base
count int // expected digit count
{s: "0x.0"},
// no errors
- {"0", 0, nil, 10, 1, true, 0},
- {"0", 10, nil, 10, 1, true, 0},
- {"0", 36, nil, 36, 1, true, 0},
- {"1", 0, nat{1}, 10, 1, true, 0},
- {"1", 10, nat{1}, 10, 1, true, 0},
- {"0 ", 0, nil, 10, 1, true, ' '},
- {"08", 0, nil, 10, 1, true, '8'},
- {"08", 10, nat{8}, 10, 2, true, 0},
- {"018", 0, nat{1}, 8, 1, true, '8'},
- {"0b1", 0, nat{1}, 2, 1, true, 0},
- {"0b11000101", 0, nat{0xc5}, 2, 8, true, 0},
- {"03271", 0, nat{03271}, 8, 4, true, 0},
- {"10ab", 0, nat{10}, 10, 2, true, 'a'},
- {"1234567890", 0, nat{1234567890}, 10, 10, true, 0},
- {"xyz", 36, nat{(33*36+34)*36 + 35}, 36, 3, true, 0},
- {"xyz?", 36, nat{(33*36+34)*36 + 35}, 36, 3, true, '?'},
- {"0x", 16, nil, 16, 1, true, 'x'},
- {"0xdeadbeef", 0, nat{0xdeadbeef}, 16, 8, true, 0},
- {"0XDEADBEEF", 0, nat{0xdeadbeef}, 16, 8, true, 0},
+ {"0", 0, false, nil, 10, 1, true, 0},
+ {"0", 10, false, nil, 10, 1, true, 0},
+ {"0", 36, false, nil, 36, 1, true, 0},
+ {"1", 0, false, nat{1}, 10, 1, true, 0},
+ {"1", 10, false, nat{1}, 10, 1, true, 0},
+ {"0 ", 0, false, nil, 10, 1, true, ' '},
+ {"08", 0, false, nil, 10, 1, true, '8'},
+ {"08", 10, false, nat{8}, 10, 2, true, 0},
+ {"018", 0, false, nat{1}, 8, 1, true, '8'},
+ {"0b1", 0, false, nat{1}, 2, 1, true, 0},
+ {"0b11000101", 0, false, nat{0xc5}, 2, 8, true, 0},
+ {"03271", 0, false, nat{03271}, 8, 4, true, 0},
+ {"10ab", 0, false, nat{10}, 10, 2, true, 'a'},
+ {"1234567890", 0, false, nat{1234567890}, 10, 10, true, 0},
+ {"xyz", 36, false, nat{(33*36+34)*36 + 35}, 36, 3, true, 0},
+ {"xyz?", 36, false, nat{(33*36+34)*36 + 35}, 36, 3, true, '?'},
+ {"0x", 16, false, nil, 16, 1, true, 'x'},
+ {"0xdeadbeef", 0, false, nat{0xdeadbeef}, 16, 8, true, 0},
+ {"0XDEADBEEF", 0, false, nat{0xdeadbeef}, 16, 8, true, 0},
// no errors, decimal point
- {"0.", 0, nil, 10, 1, true, '.'},
- {"0.", 1, nil, 10, 0, true, 0},
- {"0.1.2", 1, nat{1}, 10, -1, true, '.'},
- {".000", 1, nil, 10, -3, true, 0},
- {"12.3", 1, nat{123}, 10, -1, true, 0},
- {"012.345", 1, nat{12345}, 10, -3, true, 0},
+ {"0.", 0, false, nil, 10, 1, true, '.'},
+ {"0.", 10, true, nil, 10, 0, true, 0},
+ {"0.1.2", 10, true, nat{1}, 10, -1, true, '.'},
+ {".000", 10, true, nil, 10, -3, true, 0},
+ {"12.3", 10, true, nat{123}, 10, -1, true, 0},
+ {"012.345", 10, true, nat{12345}, 10, -3, true, 0},
}
func TestScanBase(t *testing.T) {
for _, a := range natScanTests {
r := strings.NewReader(a.s)
- x, b, count, err := nat(nil).scan(r, a.base)
+ x, b, count, err := nat(nil).scan(r, a.base, a.frac)
if err == nil && !a.ok {
t.Errorf("scan%+v\n\texpected error", a)
}
// Test case for BenchmarkScanPi.
func TestScanPi(t *testing.T) {
var x nat
- z, _, _, err := x.scan(strings.NewReader(pi), 10)
+ z, _, _, err := x.scan(strings.NewReader(pi), 10, false)
if err != nil {
t.Errorf("scanning pi: %s", err)
}
func BenchmarkScanPi(b *testing.B) {
for i := 0; i < b.N; i++ {
var x nat
- x.scan(strings.NewReader(pi), 10)
+ x.scan(strings.NewReader(pi), 10, false)
}
}
func BenchmarkStringPiParallel(b *testing.B) {
var x nat
- x, _, _, _ = x.scan(strings.NewReader(pi), 0)
+ x, _, _, _ = x.scan(strings.NewReader(pi), 0, false)
if x.decimalString() != pi {
panic("benchmark incorrect: conversion failed")
}
b.StartTimer()
for i := 0; i < b.N; i++ {
- z.scan(strings.NewReader(s), base)
+ z.scan(strings.NewReader(s), base, false)
}
}
// parse fraction a/b, if any
if sep := strings.Index(s, "/"); sep >= 0 {
- if _, ok := z.a.SetString(s[:sep], 10); !ok {
+ if _, ok := z.a.SetString(s[:sep], 0); !ok {
return nil, false
}
s = s[sep+1:]
var err error
- if z.b.abs, _, _, err = z.b.abs.scan(strings.NewReader(s), 10); err != nil {
+ if z.b.abs, _, _, err = z.b.abs.scan(strings.NewReader(s), 0, false); err != nil {
return nil, false
}
if len(z.b.abs) == 0 {
// mantissa
var ecorr int
- z.a.abs, _, ecorr, err = z.a.abs.scan(r, 1)
+ z.a.abs, _, ecorr, err = z.a.abs.scan(r, 10, true)
if err != nil {
return nil, false
}
z.Quo(&x, &y)
}
-var setStringTests = []struct {
+type StringTest struct {
in, out string
ok bool
-}{
+}
+
+var setStringTests = []StringTest{
{"0", "0", true},
{"-0", "0", true},
{"1", "1", true},
{in: "1/0"},
}
+// These are not supported by fmt.Fscanf.
+var setStringTests2 = []StringTest{
+ {"0x10", "16", true},
+ {"-010/1", "-8", true}, // TODO(gri) should we even permit octal here?
+ {"-010.", "-10", true},
+ {"0x10/0x20", "1/2", true},
+ {"0b1000/3", "8/3", true},
+ // TODO(gri) add more tests
+}
+
func TestRatSetString(t *testing.T) {
- for i, test := range setStringTests {
+ var tests []StringTest
+ tests = append(tests, setStringTests...)
+ tests = append(tests, setStringTests2...)
+
+ for i, test := range tests {
x, ok := new(Rat).SetString(test.in)
if ok {