}
}
-func BenchmarkFloor(b *testing.B) {
+func BenchmarkFabs(b *testing.B) {
for i := 0; i < b.N; i++ {
- Floor(.5)
+ Fabs(.5)
}
}
}
}
+func BenchmarkFloor(b *testing.B) {
+ for i := 0; i < b.N; i++ {
+ Floor(.5)
+ }
+}
+
func BenchmarkFmax(b *testing.B) {
for i := 0; i < b.N; i++ {
Fmax(10, 3)
}
}
-func BenchmarkLog10(b *testing.B) {
+func BenchmarkLog1p(b *testing.B) {
for i := 0; i < b.N; i++ {
- Log10(.5)
+ Log1p(.5)
}
}
-func BenchmarkLog1p(b *testing.B) {
+func BenchmarkLog10(b *testing.B) {
for i := 0; i < b.N; i++ {
- Log1p(.5)
+ Log10(.5)
}
}
--- /dev/null
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+package math
+
+// Exp2 returns 2**x, the base-2 exponential of x.
+//
+// Special cases are the same as Exp.
+func Exp2(x float64) float64 { return Exp(x * Ln2) }
--- /dev/null
+// Copyright 2010 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// The method is based on a paper by Naoki Shibata: "Efficient evaluation
+// methods of elementary functions suitable for SIMD computation", Proc.
+// of International Supercomputing Conference 2010 (ISC'10), pp. 25 -- 32
+// (May 2010). The paper is available at
+// http://www.springerlink.com/content/340228x165742104/
+//
+// The original code and the constants below are from the author's
+// implementation available at http://freshmeat.net/projects/sleef.
+// The README file says, "The software is in public domain.
+// You can use the software without any obligation."
+//
+// This code is a simplified version of the original.
+
+#define LN2 0.6931471805599453094172321214581766 // log_e(2)
+#define LOG2E 1.4426950408889634073599246810018920 // 1/LN2
+#define LN2U 0.69314718055966295651160180568695068359375 // upper half LN2
+#define LN2L 0.28235290563031577122588448175013436025525412068e-12 // lower half LN2
+
+// func Exp(x float64) float64
+TEXT ·Exp(SB),7,$0
+// test bits for not-finite
+ MOVQ x+0(FP), AX
+ MOVQ $0x7ff0000000000000, BX
+ ANDQ BX, AX
+ CMPQ BX, AX
+ JEQ not_finite
+ MOVSD x+0(FP), X0
+ MOVSD $LOG2E, X1
+ MULSD X0, X1
+ CVTTSD2SQ X1, BX // BX = exponent
+ CVTSQ2SD BX, X1
+ MOVSD $LN2U, X2
+ MULSD X1, X2
+ SUBSD X2, X0
+ MOVSD $LN2L, X2
+ MULSD X1, X2
+ SUBSD X2, X0
+ // reduce argument
+ MOVSD $0.0625, X1
+ MULSD X1, X0
+ // Taylor series evaluation
+ MOVSD $2.4801587301587301587e-5, X1
+ MULSD X0, X1
+ MOVSD $1.9841269841269841270e-4, X2
+ ADDSD X2, X1
+ MULSD X0, X1
+ MOVSD $1.3888888888888888889e-3, X2
+ ADDSD X2, X1
+ MULSD X0, X1
+ MOVSD $8.3333333333333333333e-3, X2
+ ADDSD X2, X1
+ MULSD X0, X1
+ MOVSD $4.1666666666666666667e-2, X2
+ ADDSD X2, X1
+ MULSD X0, X1
+ MOVSD $1.6666666666666666667e-1, X2
+ ADDSD X2, X1
+ MULSD X0, X1
+ MOVSD $0.5, X2
+ ADDSD X2, X1
+ MULSD X0, X1
+ MOVSD $1.0, X2
+ ADDSD X2, X1
+ MULSD X1, X0
+ MOVSD $2.0, X1
+ ADDSD X0, X1
+ MULSD X1, X0
+ MOVSD $2.0, X1
+ ADDSD X0, X1
+ MULSD X1, X0
+ MOVSD $2.0, X1
+ ADDSD X0, X1
+ MULSD X1, X0
+ MOVSD $2.0, X1
+ ADDSD X0, X1
+ MULSD X1, X0
+ MOVSD $1.0, X1
+ ADDSD X1, X0
+ // return ldexp(fr, exp)
+ MOVQ $0x3ff, AX // bias + 1
+ ADDQ AX, BX
+ MOVQ BX, X1
+ MOVQ $52, AX // shift
+ MOVQ AX, X2
+ PSLLQ X2, X1
+ MULSD X1, X0
+ MOVSD X0, r+8(FP)
+ RET
+not_finite:
+// test bits for -Inf
+ MOVQ x+0(FP), AX
+ MOVQ $0xfff0000000000000, BX
+ CMPQ BX, AX
+ JNE not_neginf
+ XORQ AX, AX
+ MOVQ AX, r+8(FP)
+ RET
+not_neginf:
+ MOVQ AX, r+8(FP)
+ RET