// Compute hash to make our evacuation decision (whether we need
// to send this key/value to bucket x or bucket y).
hash := alg.hash(k2, uintptr(h.hash0))
- if h.flags&iterator != 0 {
- if !t.reflexivekey && !alg.equal(k2, k2) {
- // If key != key (NaNs), then the hash could be (and probably
- // will be) entirely different from the old hash. Moreover,
- // it isn't reproducible. Reproducibility is required in the
- // presence of iterators, as our evacuation decision must
- // match whatever decision the iterator made.
- // Fortunately, we have the freedom to send these keys either
- // way. Also, tophash is meaningless for these kinds of keys.
- // We let the low bit of tophash drive the evacuation decision.
- // We recompute a new random tophash for the next level so
- // these keys will get evenly distributed across all buckets
- // after multiple grows.
- if top&1 != 0 {
- hash |= newbit
- } else {
- hash &^= newbit
- }
- top = uint8(hash >> (sys.PtrSize*8 - 8))
- if top < minTopHash {
- top += minTopHash
- }
+ if h.flags&iterator != 0 && !t.reflexivekey && !alg.equal(k2, k2) {
+ // If key != key (NaNs), then the hash could be (and probably
+ // will be) entirely different from the old hash. Moreover,
+ // it isn't reproducible. Reproducibility is required in the
+ // presence of iterators, as our evacuation decision must
+ // match whatever decision the iterator made.
+ // Fortunately, we have the freedom to send these keys either
+ // way. Also, tophash is meaningless for these kinds of keys.
+ // We let the low bit of tophash drive the evacuation decision.
+ // We recompute a new random tophash for the next level so
+ // these keys will get evenly distributed across all buckets
+ // after multiple grows.
+ if top&1 != 0 {
+ hash |= newbit
+ } else {
+ hash &^= newbit
+ }
+ top = uint8(hash >> (sys.PtrSize*8 - 8))
+ if top < minTopHash {
+ top += minTopHash
}
}
useX = hash&newbit == 0