--- /dev/null
+// Copyright 2011 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// CPU profiling.
+// Based on algorithms and data structures used in
+// http://code.google.com/p/google-perftools/.
+//
+// The main difference between this code and the google-perftools
+// code is that this code is written to allow copying the profile data
+// to an arbitrary io.Writer, while the google-perftools code always
+// writes to an operating system file.
+//
+// The signal handler for the profiling clock tick adds a new stack trace
+// to a hash table tracking counts for recent traces. Most clock ticks
+// hit in the cache. In the event of a cache miss, an entry must be
+// evicted from the hash table, copied to a log that will eventually be
+// written as profile data. The google-perftools code flushed the
+// log itself during the signal handler. This code cannot do that, because
+// the io.Writer might block or need system calls or locks that are not
+// safe to use from within the signal handler. Instead, we split the log
+// into two halves and let the signal handler fill one half while a goroutine
+// is writing out the other half. When the signal handler fills its half, it
+// offers to swap with the goroutine. If the writer is not done with its half,
+// we lose the stack trace for this clock tick (and record that loss).
+// The goroutine interacts with the signal handler by calling getprofile() to
+// get the next log piece to write, implicitly handing back the last log
+// piece it obtained.
+//
+// The state of this dance between the signal handler and the goroutine
+// is encoded in the Profile.handoff field. If handoff == 0, then the goroutine
+// is not using either log half and is waiting (or will soon be waiting) for
+// a new piece by calling notesleep(&p->wait). If the signal handler
+// changes handoff from 0 to non-zero, it must call notewakeup(&p->wait)
+// to wake the goroutine. The value indicates the number of entries in the
+// log half being handed off. The goroutine leaves the non-zero value in
+// place until it has finished processing the log half and then flips the number
+// back to zero. Setting the high bit in handoff means that the profiling is over,
+// and the goroutine is now in charge of flushing the data left in the hash table
+// to the log and returning that data.
+//
+// The handoff field is manipulated using atomic operations.
+// For the most part, the manipulation of handoff is orderly: if handoff == 0
+// then the signal handler owns it and can change it to non-zero.
+// If handoff != 0 then the goroutine owns it and can change it to zero.
+// If that were the end of the story then we would not need to manipulate
+// handoff using atomic operations. The operations are needed, however,
+// in order to let the log closer set the high bit to indicate "EOF" safely
+// in the situation when normally the goroutine "owns" handoff.
+
+package runtime
+
+import "unsafe"
+
+const (
+ numBuckets = 1 << 10
+ logSize = 1 << 17
+ assoc = 4
+ maxCPUProfStack = 64
+)
+
+type cpuprofEntry struct {
+ count uintptr
+ depth uintptr
+ stack [maxCPUProfStack]uintptr
+}
+
+type cpuProfile struct {
+ on bool // profiling is on
+ wait note // goroutine waits here
+ count uintptr // tick count
+ evicts uintptr // eviction count
+ lost uintptr // lost ticks that need to be logged
+
+ // Active recent stack traces.
+ hash [numBuckets]struct {
+ entry [assoc]cpuprofEntry
+ }
+
+ // Log of traces evicted from hash.
+ // Signal handler has filled log[toggle][:nlog].
+ // Goroutine is writing log[1-toggle][:handoff].
+ log [2][logSize / 2]uintptr
+ nlog uintptr
+ toggle int32
+ handoff uint32
+
+ // Writer state.
+ // Writer maintains its own toggle to avoid races
+ // looking at signal handler's toggle.
+ wtoggle uint32
+ wholding bool // holding & need to release a log half
+ flushing bool // flushing hash table - profile is over
+ eodSent bool // special end-of-data record sent; => flushing
+}
+
+var (
+ cpuprofLock mutex
+ cpuprof *cpuProfile
+
+ eod = [3]uintptr{0, 1, 0}
+)
+
+func setcpuprofilerate(int32) // proc.c
+
+// lostProfileData is a no-op function used in profiles
+// to mark the number of profiling stack traces that were
+// discarded due to slow data writers.
+func lostProfileData() {}
+
+// SetCPUProfileRate sets the CPU profiling rate to hz samples per second.
+// If hz <= 0, SetCPUProfileRate turns off profiling.
+// If the profiler is on, the rate cannot be changed without first turning it off.
+//
+// Most clients should use the runtime/pprof package or
+// the testing package's -test.cpuprofile flag instead of calling
+// SetCPUProfileRate directly.
+func SetCPUProfileRate(hz int) {
+ // Clamp hz to something reasonable.
+ if hz < 0 {
+ hz = 0
+ }
+ if hz > 1000000 {
+ hz = 1000000
+ }
+
+ lock(&cpuprofLock)
+ if hz > 0 {
+ if cpuprof == nil {
+ cpuprof = (*cpuProfile)(sysAlloc(unsafe.Sizeof(cpuProfile{}), &memstats.other_sys))
+ if cpuprof == nil {
+ print("runtime: cpu profiling cannot allocate memory\n")
+ unlock(&cpuprofLock)
+ return
+ }
+ }
+ if cpuprof.on || cpuprof.handoff != 0 {
+ print("runtime: cannot set cpu profile rate until previous profile has finished.\n")
+ unlock(&cpuprofLock)
+ return
+ }
+
+ cpuprof.on = true
+ // pprof binary header format.
+ // http://code.google.com/p/google-perftools/source/browse/trunk/src/profiledata.cc#117
+ p := &cpuprof.log[0]
+ p[0] = 0 // count for header
+ p[1] = 3 // depth for header
+ p[2] = 0 // version number
+ p[3] = uintptr(1e6 / hz) // period (microseconds)
+ p[4] = 0
+ cpuprof.nlog = 5
+ cpuprof.toggle = 0
+ cpuprof.wholding = false
+ cpuprof.wtoggle = 0
+ cpuprof.flushing = false
+ cpuprof.eodSent = false
+ noteclear(&cpuprof.wait)
+
+ setcpuprofilerate(int32(hz))
+ } else if cpuprof != nil && cpuprof.on {
+ setcpuprofilerate(0)
+ cpuprof.on = false
+
+ // Now add is not running anymore, and getprofile owns the entire log.
+ // Set the high bit in prof->handoff to tell getprofile.
+ for {
+ n := cpuprof.handoff
+ if n&0x80000000 != 0 {
+ print("runtime: setcpuprofile(off) twice\n")
+ }
+ if cas(&cpuprof.handoff, n, n|0x80000000) {
+ if n == 0 {
+ // we did the transition from 0 -> nonzero so we wake getprofile
+ notewakeup(&cpuprof.wait)
+ }
+ break
+ }
+ }
+ }
+ unlock(&cpuprofLock)
+}
+
+func cpuproftick(pc *uintptr, n int32) {
+ if n > maxCPUProfStack {
+ n = maxCPUProfStack
+ }
+ s := (*[maxCPUProfStack]uintptr)(unsafe.Pointer(pc))[:n]
+ cpuprof.add(s)
+}
+
+// add adds the stack trace to the profile.
+// It is called from signal handlers and other limited environments
+// and cannot allocate memory or acquire locks that might be
+// held at the time of the signal, nor can it use substantial amounts
+// of stack. It is allowed to call evict.
+func (p *cpuProfile) add(pc []uintptr) {
+ // Compute hash.
+ h := uintptr(0)
+ for _, x := range pc {
+ h = h<<8 | (h >> (8 * (unsafe.Sizeof(h) - 1)))
+ h += x*31 + x*7 + x*3
+ }
+ p.count++
+
+ // Add to entry count if already present in table.
+ b := &p.hash[h%numBuckets]
+Assoc:
+ for i := range b.entry {
+ e := &b.entry[i]
+ if e.depth != uintptr(len(pc)) {
+ continue
+ }
+ for j := range pc {
+ if e.stack[j] != pc[j] {
+ continue Assoc
+ }
+ }
+ e.count++
+ return
+ }
+
+ // Evict entry with smallest count.
+ var e *cpuprofEntry
+ for i := range b.entry {
+ if e == nil || b.entry[i].count < e.count {
+ e = &b.entry[i]
+ }
+ }
+ if e.count > 0 {
+ if !p.evict(e) {
+ // Could not evict entry. Record lost stack.
+ p.lost++
+ return
+ }
+ p.evicts++
+ }
+
+ // Reuse the newly evicted entry.
+ e.depth = uintptr(len(pc))
+ e.count = 1
+ for i := range pc {
+ e.stack[i] = pc[i]
+ }
+}
+
+// evict copies the given entry's data into the log, so that
+// the entry can be reused. evict is called from add, which
+// is called from the profiling signal handler, so it must not
+// allocate memory or block. It is safe to call flushlog.
+// evict returns true if the entry was copied to the log,
+// false if there was no room available.
+func (p *cpuProfile) evict(e *cpuprofEntry) bool {
+ d := e.depth
+ nslot := d + 2
+ log := &p.log[p.toggle]
+ if p.nlog+nslot > uintptr(len(p.log[0])) {
+ if !p.flushlog() {
+ return false
+ }
+ log = &p.log[p.toggle]
+ }
+
+ q := p.nlog
+ log[q] = e.count
+ q++
+ log[q] = d
+ q++
+ for i := uintptr(0); i < d; i++ {
+ log[q] = e.stack[i]
+ q++
+ }
+ p.nlog = q
+ e.count = 0
+ return true
+}
+
+// flushlog tries to flush the current log and switch to the other one.
+// flushlog is called from evict, called from add, called from the signal handler,
+// so it cannot allocate memory or block. It can try to swap logs with
+// the writing goroutine, as explained in the comment at the top of this file.
+func (p *cpuProfile) flushlog() bool {
+ if !cas(&p.handoff, 0, uint32(p.nlog)) {
+ return false
+ }
+ notewakeup(&p.wait)
+
+ p.toggle = 1 - p.toggle
+ log := &p.log[p.toggle]
+ q := uintptr(0)
+ if p.lost > 0 {
+ f := lostProfileData
+ lostPC := **(**uintptr)(unsafe.Pointer(&f))
+ log[0] = p.lost
+ log[1] = 1
+ log[2] = lostPC
+ q = 3
+ p.lost = 0
+ }
+ p.nlog = q
+ return true
+}
+
+// getprofile blocks until the next block of profiling data is available
+// and returns it as a []byte. It is called from the writing goroutine.
+func (p *cpuProfile) getprofile() []byte {
+ if p == nil {
+ return nil
+ }
+
+ if p.wholding {
+ // Release previous log to signal handling side.
+ // Loop because we are racing against SetCPUProfileRate(0).
+ for {
+ n := p.handoff
+ if n == 0 {
+ print("runtime: phase error during cpu profile handoff\n")
+ return nil
+ }
+ if n&0x80000000 != 0 {
+ p.wtoggle = 1 - p.wtoggle
+ p.wholding = false
+ p.flushing = true
+ goto Flush
+ }
+ if cas(&p.handoff, n, 0) {
+ break
+ }
+ }
+ p.wtoggle = 1 - p.wtoggle
+ p.wholding = false
+ }
+
+ if p.flushing {
+ goto Flush
+ }
+
+ if !p.on && p.handoff == 0 {
+ return nil
+ }
+
+ // Wait for new log.
+ notetsleepg(&p.wait, -1)
+ noteclear(&p.wait)
+
+ switch n := p.handoff; {
+ case n == 0:
+ print("runtime: phase error during cpu profile wait\n")
+ return nil
+ case n == 0x80000000:
+ p.flushing = true
+ goto Flush
+ default:
+ n &^= 0x80000000
+
+ // Return new log to caller.
+ p.wholding = true
+
+ return uintptrBytes(p.log[p.wtoggle][:n])
+ }
+
+ // In flush mode.
+ // Add is no longer being called. We own the log.
+ // Also, p->handoff is non-zero, so flushlog will return false.
+ // Evict the hash table into the log and return it.
+Flush:
+ for i := range p.hash {
+ b := &p.hash[i]
+ for j := range b.entry {
+ e := &b.entry[j]
+ if e.count > 0 && !p.evict(e) {
+ // Filled the log. Stop the loop and return what we've got.
+ break Flush
+ }
+ }
+ }
+
+ // Return pending log data.
+ if p.nlog > 0 {
+ // Note that we're using toggle now, not wtoggle,
+ // because we're working on the log directly.
+ n := p.nlog
+ p.nlog = 0
+ return uintptrBytes(p.log[p.toggle][:n])
+ }
+
+ // Made it through the table without finding anything to log.
+ if !p.eodSent {
+ // We may not have space to append this to the partial log buf,
+ // so we always return a new slice for the end-of-data marker.
+ p.eodSent = true
+ return uintptrBytes(eod[:])
+ }
+
+ // Finally done. Clean up and return nil.
+ p.flushing = false
+ if !cas(&p.handoff, p.handoff, 0) {
+ print("runtime: profile flush racing with something\n")
+ }
+ return nil
+}
+
+func uintptrBytes(p []uintptr) (ret []byte) {
+ pp := (*sliceStruct)(unsafe.Pointer(&p))
+ rp := (*sliceStruct)(unsafe.Pointer(&ret))
+
+ rp.array = pp.array
+ rp.len = pp.len * int(unsafe.Sizeof(p[0]))
+ rp.cap = rp.len
+
+ return
+}
+
+// CPUProfile returns the next chunk of binary CPU profiling stack trace data,
+// blocking until data is available. If profiling is turned off and all the profile
+// data accumulated while it was on has been returned, CPUProfile returns nil.
+// The caller must save the returned data before calling CPUProfile again.
+//
+// Most clients should use the runtime/pprof package or
+// the testing package's -test.cpuprofile flag instead of calling
+// CPUProfile directly.
+func CPUProfile() []byte {
+ return cpuprof.getprofile()
+}
+++ /dev/null
-// Copyright 2011 The Go Authors. All rights reserved.
-// Use of this source code is governed by a BSD-style
-// license that can be found in the LICENSE file.
-
-// CPU profiling.
-// Based on algorithms and data structures used in
-// http://code.google.com/p/google-perftools/.
-//
-// The main difference between this code and the google-perftools
-// code is that this code is written to allow copying the profile data
-// to an arbitrary io.Writer, while the google-perftools code always
-// writes to an operating system file.
-//
-// The signal handler for the profiling clock tick adds a new stack trace
-// to a hash table tracking counts for recent traces. Most clock ticks
-// hit in the cache. In the event of a cache miss, an entry must be
-// evicted from the hash table, copied to a log that will eventually be
-// written as profile data. The google-perftools code flushed the
-// log itself during the signal handler. This code cannot do that, because
-// the io.Writer might block or need system calls or locks that are not
-// safe to use from within the signal handler. Instead, we split the log
-// into two halves and let the signal handler fill one half while a goroutine
-// is writing out the other half. When the signal handler fills its half, it
-// offers to swap with the goroutine. If the writer is not done with its half,
-// we lose the stack trace for this clock tick (and record that loss).
-// The goroutine interacts with the signal handler by calling getprofile() to
-// get the next log piece to write, implicitly handing back the last log
-// piece it obtained.
-//
-// The state of this dance between the signal handler and the goroutine
-// is encoded in the Profile.handoff field. If handoff == 0, then the goroutine
-// is not using either log half and is waiting (or will soon be waiting) for
-// a new piece by calling notesleep(&p->wait). If the signal handler
-// changes handoff from 0 to non-zero, it must call notewakeup(&p->wait)
-// to wake the goroutine. The value indicates the number of entries in the
-// log half being handed off. The goroutine leaves the non-zero value in
-// place until it has finished processing the log half and then flips the number
-// back to zero. Setting the high bit in handoff means that the profiling is over,
-// and the goroutine is now in charge of flushing the data left in the hash table
-// to the log and returning that data.
-//
-// The handoff field is manipulated using atomic operations.
-// For the most part, the manipulation of handoff is orderly: if handoff == 0
-// then the signal handler owns it and can change it to non-zero.
-// If handoff != 0 then the goroutine owns it and can change it to zero.
-// If that were the end of the story then we would not need to manipulate
-// handoff using atomic operations. The operations are needed, however,
-// in order to let the log closer set the high bit to indicate "EOF" safely
-// in the situation when normally the goroutine "owns" handoff.
-
-package runtime
-#include "runtime.h"
-#include "arch_GOARCH.h"
-#include "malloc.h"
-
-enum
-{
- HashSize = 1<<10,
- LogSize = 1<<17,
- Assoc = 4,
- MaxStack = 64,
-};
-
-typedef struct Profile Profile;
-typedef struct Bucket Bucket;
-typedef struct Entry Entry;
-
-struct Entry {
- uintptr count;
- uintptr depth;
- uintptr stack[MaxStack];
-};
-
-struct Bucket {
- Entry entry[Assoc];
-};
-
-struct Profile {
- bool on; // profiling is on
- Note wait; // goroutine waits here
- uintptr count; // tick count
- uintptr evicts; // eviction count
- uintptr lost; // lost ticks that need to be logged
-
- // Active recent stack traces.
- Bucket hash[HashSize];
-
- // Log of traces evicted from hash.
- // Signal handler has filled log[toggle][:nlog].
- // Goroutine is writing log[1-toggle][:handoff].
- uintptr log[2][LogSize/2];
- uintptr nlog;
- int32 toggle;
- uint32 handoff;
-
- // Writer state.
- // Writer maintains its own toggle to avoid races
- // looking at signal handler's toggle.
- uint32 wtoggle;
- bool wholding; // holding & need to release a log half
- bool flushing; // flushing hash table - profile is over
- bool eod_sent; // special end-of-data record sent; => flushing
-};
-
-static Mutex lk;
-static Profile *prof;
-
-static void tick(uintptr*, int32);
-static void add(Profile*, uintptr*, int32);
-static bool evict(Profile*, Entry*);
-static bool flushlog(Profile*);
-
-static uintptr eod[3] = {0, 1, 0};
-
-// LostProfileData is a no-op function used in profiles
-// to mark the number of profiling stack traces that were
-// discarded due to slow data writers.
-static void
-LostProfileData(void)
-{
-}
-
-// SetCPUProfileRate sets the CPU profiling rate.
-// The user documentation is in debug.go.
-void
-runtime·SetCPUProfileRate(intgo hz)
-{
- uintptr *p;
- uintptr n;
-
- // Clamp hz to something reasonable.
- if(hz < 0)
- hz = 0;
- if(hz > 1000000)
- hz = 1000000;
-
- runtime·lock(&lk);
- if(hz > 0) {
- if(prof == nil) {
- prof = runtime·sysAlloc(sizeof *prof, &mstats.other_sys);
- if(prof == nil) {
- runtime·printf("runtime: cpu profiling cannot allocate memory\n");
- runtime·unlock(&lk);
- return;
- }
- }
- if(prof->on || prof->handoff != 0) {
- runtime·printf("runtime: cannot set cpu profile rate until previous profile has finished.\n");
- runtime·unlock(&lk);
- return;
- }
-
- prof->on = true;
- p = prof->log[0];
- // pprof binary header format.
- // http://code.google.com/p/google-perftools/source/browse/trunk/src/profiledata.cc#117
- *p++ = 0; // count for header
- *p++ = 3; // depth for header
- *p++ = 0; // version number
- *p++ = 1000000 / hz; // period (microseconds)
- *p++ = 0;
- prof->nlog = p - prof->log[0];
- prof->toggle = 0;
- prof->wholding = false;
- prof->wtoggle = 0;
- prof->flushing = false;
- prof->eod_sent = false;
- runtime·noteclear(&prof->wait);
-
- runtime·setcpuprofilerate(tick, hz);
- } else if(prof != nil && prof->on) {
- runtime·setcpuprofilerate(nil, 0);
- prof->on = false;
-
- // Now add is not running anymore, and getprofile owns the entire log.
- // Set the high bit in prof->handoff to tell getprofile.
- for(;;) {
- n = prof->handoff;
- if(n&0x80000000)
- runtime·printf("runtime: setcpuprofile(off) twice");
- if(runtime·cas(&prof->handoff, n, n|0x80000000))
- break;
- }
- if(n == 0) {
- // we did the transition from 0 -> nonzero so we wake getprofile
- runtime·notewakeup(&prof->wait);
- }
- }
- runtime·unlock(&lk);
-}
-
-static void
-tick(uintptr *pc, int32 n)
-{
- add(prof, pc, n);
-}
-
-// add adds the stack trace to the profile.
-// It is called from signal handlers and other limited environments
-// and cannot allocate memory or acquire locks that might be
-// held at the time of the signal, nor can it use substantial amounts
-// of stack. It is allowed to call evict.
-static void
-add(Profile *p, uintptr *pc, int32 n)
-{
- int32 i, j;
- uintptr h, x;
- Bucket *b;
- Entry *e;
-
- if(n > MaxStack)
- n = MaxStack;
-
- // Compute hash.
- h = 0;
- for(i=0; i<n; i++) {
- h = h<<8 | (h>>(8*(sizeof(h)-1)));
- x = pc[i];
- h += x*31 + x*7 + x*3;
- }
- p->count++;
-
- // Add to entry count if already present in table.
- b = &p->hash[h%HashSize];
- for(i=0; i<Assoc; i++) {
- e = &b->entry[i];
- if(e->depth != n)
- continue;
- for(j=0; j<n; j++)
- if(e->stack[j] != pc[j])
- goto ContinueAssoc;
- e->count++;
- return;
- ContinueAssoc:;
- }
-
- // Evict entry with smallest count.
- e = &b->entry[0];
- for(i=1; i<Assoc; i++)
- if(b->entry[i].count < e->count)
- e = &b->entry[i];
- if(e->count > 0) {
- if(!evict(p, e)) {
- // Could not evict entry. Record lost stack.
- p->lost++;
- return;
- }
- p->evicts++;
- }
-
- // Reuse the newly evicted entry.
- e->depth = n;
- e->count = 1;
- for(i=0; i<n; i++)
- e->stack[i] = pc[i];
-}
-
-// evict copies the given entry's data into the log, so that
-// the entry can be reused. evict is called from add, which
-// is called from the profiling signal handler, so it must not
-// allocate memory or block. It is safe to call flushLog.
-// evict returns true if the entry was copied to the log,
-// false if there was no room available.
-static bool
-evict(Profile *p, Entry *e)
-{
- int32 i, d, nslot;
- uintptr *log, *q;
-
- d = e->depth;
- nslot = d+2;
- log = p->log[p->toggle];
- if(p->nlog+nslot > nelem(p->log[0])) {
- if(!flushlog(p))
- return false;
- log = p->log[p->toggle];
- }
-
- q = log+p->nlog;
- *q++ = e->count;
- *q++ = d;
- for(i=0; i<d; i++)
- *q++ = e->stack[i];
- p->nlog = q - log;
- e->count = 0;
- return true;
-}
-
-// flushlog tries to flush the current log and switch to the other one.
-// flushlog is called from evict, called from add, called from the signal handler,
-// so it cannot allocate memory or block. It can try to swap logs with
-// the writing goroutine, as explained in the comment at the top of this file.
-static bool
-flushlog(Profile *p)
-{
- uintptr *log, *q;
-
- if(!runtime·cas(&p->handoff, 0, p->nlog))
- return false;
- runtime·notewakeup(&p->wait);
-
- p->toggle = 1 - p->toggle;
- log = p->log[p->toggle];
- q = log;
- if(p->lost > 0) {
- *q++ = p->lost;
- *q++ = 1;
- *q++ = (uintptr)LostProfileData;
- p->lost = 0;
- }
- p->nlog = q - log;
- return true;
-}
-
-// getprofile blocks until the next block of profiling data is available
-// and returns it as a []byte. It is called from the writing goroutine.
-static Slice
-getprofile(Profile *p)
-{
- uint32 i, j, n;
- Slice ret;
- Bucket *b;
- Entry *e;
-
- ret.array = nil;
- ret.len = 0;
- ret.cap = 0;
-
- if(p == nil)
- return ret;
-
- if(p->wholding) {
- // Release previous log to signal handling side.
- // Loop because we are racing against SetCPUProfileRate(0).
- for(;;) {
- n = p->handoff;
- if(n == 0) {
- runtime·printf("runtime: phase error during cpu profile handoff\n");
- return ret;
- }
- if(n & 0x80000000) {
- p->wtoggle = 1 - p->wtoggle;
- p->wholding = false;
- p->flushing = true;
- goto flush;
- }
- if(runtime·cas(&p->handoff, n, 0))
- break;
- }
- p->wtoggle = 1 - p->wtoggle;
- p->wholding = false;
- }
-
- if(p->flushing)
- goto flush;
-
- if(!p->on && p->handoff == 0)
- return ret;
-
- // Wait for new log.
- runtime·notetsleepg(&p->wait, -1);
- runtime·noteclear(&p->wait);
-
- n = p->handoff;
- if(n == 0) {
- runtime·printf("runtime: phase error during cpu profile wait\n");
- return ret;
- }
- if(n == 0x80000000) {
- p->flushing = true;
- goto flush;
- }
- n &= ~0x80000000;
-
- // Return new log to caller.
- p->wholding = true;
-
- ret.array = (byte*)p->log[p->wtoggle];
- ret.len = n*sizeof(uintptr);
- ret.cap = ret.len;
- return ret;
-
-flush:
- // In flush mode.
- // Add is no longer being called. We own the log.
- // Also, p->handoff is non-zero, so flushlog will return false.
- // Evict the hash table into the log and return it.
- for(i=0; i<HashSize; i++) {
- b = &p->hash[i];
- for(j=0; j<Assoc; j++) {
- e = &b->entry[j];
- if(e->count > 0 && !evict(p, e)) {
- // Filled the log. Stop the loop and return what we've got.
- goto breakflush;
- }
- }
- }
-breakflush:
-
- // Return pending log data.
- if(p->nlog > 0) {
- // Note that we're using toggle now, not wtoggle,
- // because we're working on the log directly.
- ret.array = (byte*)p->log[p->toggle];
- ret.len = p->nlog*sizeof(uintptr);
- ret.cap = ret.len;
- p->nlog = 0;
- return ret;
- }
-
- // Made it through the table without finding anything to log.
- if(!p->eod_sent) {
- // We may not have space to append this to the partial log buf,
- // so we always return a new slice for the end-of-data marker.
- p->eod_sent = true;
- ret.array = (byte*)eod;
- ret.len = sizeof eod;
- ret.cap = ret.len;
- return ret;
- }
-
- // Finally done. Clean up and return nil.
- p->flushing = false;
- if(!runtime·cas(&p->handoff, p->handoff, 0))
- runtime·printf("runtime: profile flush racing with something\n");
- return ret; // set to nil at top of function
-}
-
-// CPUProfile returns the next cpu profile block as a []byte.
-// The user documentation is in debug.go.
-func CPUProfile() (ret Slice) {
- ret = getprofile(prof);
-}
}
func gcount() int32
-
-// CPUProfile returns the next chunk of binary CPU profiling stack trace data,
-// blocking until data is available. If profiling is turned off and all the profile
-// data accumulated while it was on has been returned, CPUProfile returns nil.
-// The caller must save the returned data before calling CPUProfile again.
-//
-// Most clients should use the runtime/pprof package or
-// the testing package's -test.cpuprofile flag instead of calling
-// CPUProfile directly.
-func CPUProfile() []byte
-
-// SetCPUProfileRate sets the CPU profiling rate to hz samples per second.
-// If hz <= 0, SetCPUProfileRate turns off profiling.
-// If the profiler is on, the rate cannot be changed without first turning it off.
-//
-// Most clients should use the runtime/pprof package or
-// the testing package's -test.cpuprofile flag instead of calling
-// SetCPUProfileRate directly.
-func SetCPUProfileRate(hz int)
static struct {
Mutex lock;
- void (*fn)(uintptr*, int32);
int32 hz;
} prof;
static void System(void) {}
static void ExternalCode(void) {}
static void GC(void) {}
+extern void runtime·cpuproftick(uintptr*, int32);
extern byte runtime·etext[];
// Called if we receive a SIGPROF signal.
m = 0;
USED(m);
- if(prof.fn == nil || prof.hz == 0)
+ if(prof.hz == 0)
return;
// Profiling runs concurrently with GC, so it must not allocate.
}
}
- if(prof.fn != nil) {
+ if(prof.hz != 0) {
runtime·lock(&prof.lock);
- if(prof.fn != nil)
- prof.fn(stk, n);
+ if(prof.hz != 0)
+ runtime·cpuproftick(stk, n);
runtime·unlock(&prof.lock);
}
mp->mallocing--;
// Arrange to call fn with a traceback hz times a second.
void
-runtime·setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz)
+runtime·setcpuprofilerate(int32 hz)
{
// Force sane arguments.
if(hz < 0)
hz = 0;
- if(hz == 0)
- fn = nil;
- if(fn == nil)
- hz = 0;
// Disable preemption, otherwise we can be rescheduled to another thread
// that has profiling enabled.
runtime·resetcpuprofiler(0);
runtime·lock(&prof.lock);
- prof.fn = fn;
prof.hz = hz;
runtime·unlock(&prof.lock);
runtime·lock(&runtime·sched.lock);
void runtime·unwindstack(G*, byte*);
void runtime·sigprof(uint8 *pc, uint8 *sp, uint8 *lr, G *gp, M *mp);
void runtime·resetcpuprofiler(int32);
-void runtime·setcpuprofilerate(void(*)(uintptr*, int32), int32);
+void runtime·setcpuprofilerate(int32);
void runtime·usleep(uint32);
int64 runtime·cputicks(void);
int64 runtime·tickspersecond(void);