}
}
+var (
+ NaN = math.NaN()
+ posInf = math.Inf(1)
+ negInf = math.Inf(-1)
+)
+
const b32 uint32 = 1<<32 - 1
const b64 uint64 = 1<<64 - 1
{"% .3g", 1.0, " 1"},
{"%b", float32(1.0), "8388608p-23"},
{"%b", 1.0, "4503599627370496p-52"},
+ // Precision has no effect for binary float format.
+ {"%.4b", float32(1.0), "8388608p-23"},
+ {"%.4b", -1.0, "-4503599627370496p-52"},
+ // float infinites and NaNs
+ {"%f", posInf, "+Inf"},
+ {"%.1f", negInf, "-Inf"},
+ {"% f", NaN, " NaN"},
+ {"%20f", posInf, " +Inf"},
+ {"% 20F", posInf, " Inf"},
+ {"% 20e", negInf, " -Inf"},
+ {"%+20E", negInf, " -Inf"},
+ {"% +20g", negInf, " -Inf"},
+ {"%+-20G", posInf, "+Inf "},
+ {"%20e", NaN, " NaN"},
+ {"% +20E", NaN, " +NaN"},
+ {"% -20g", NaN, " NaN "},
+ {"%+-20G", NaN, "+NaN "},
+ // Zero padding does not apply to infinities and NaN.
+ {"%+020e", posInf, " +Inf"},
+ {"%-020f", negInf, "-Inf "},
+ {"%-020E", NaN, "NaN "},
// complex values
{"%.f", 0i, "(0+0i)"},
+ {"% .f", 0i, "( 0+0i)"},
{"%+.f", 0i, "(+0+0i)"},
{"% +.f", 0i, "(+0+0i)"},
{"%+.3e", 0i, "(+0.000e+00+0.000e+00i)"},
{"%.3f", -1 - 2i, "(-1.000-2.000i)"},
{"%.3g", -1 - 2i, "(-1-2i)"},
{"% .3E", -1 - 2i, "(-1.000E+00-2.000E+00i)"},
+ {"%+.3g", 1 + 2i, "(+1+2i)"},
{"%+.3g", complex64(1 + 2i), "(+1+2i)"},
- {"%+.3g", complex128(1 + 2i), "(+1+2i)"},
- {"%b", complex64(1 + 2i), "(8388608p-23+8388608p-22i)"},
{"%b", 1 + 2i, "(4503599627370496p-52+4503599627370496p-51i)"},
+ {"%b", complex64(1 + 2i), "(8388608p-23+8388608p-22i)"},
+ // Precision has no effect for binary complex format.
+ {"%.4b", 1 + 2i, "(4503599627370496p-52+4503599627370496p-51i)"},
+ {"%.4b", complex64(1 + 2i), "(8388608p-23+8388608p-22i)"},
+ // complex infinites and NaNs
+ {"%f", complex(posInf, posInf), "(+Inf+Infi)"},
+ {"%f", complex(negInf, negInf), "(-Inf-Infi)"},
+ {"%f", complex(NaN, NaN), "(NaN+NaNi)"},
+ {"%.1f", complex(posInf, posInf), "(+Inf+Infi)"},
+ {"% f", complex(posInf, posInf), "( Inf+Infi)"},
+ {"% f", complex(negInf, negInf), "(-Inf-Infi)"},
+ {"% f", complex(NaN, NaN), "( NaN+NaNi)"},
+ {"%8e", complex(posInf, posInf), "( +Inf +Infi)"},
+ {"% 8E", complex(posInf, posInf), "( Inf +Infi)"},
+ {"%+8f", complex(negInf, negInf), "( -Inf -Infi)"},
+ {"% +8g", complex(negInf, negInf), "( -Inf -Infi)"},
+ {"% -8G", complex(NaN, NaN), "( NaN +NaN i)"},
+ {"%+-8b", complex(NaN, NaN), "(+NaN +NaN i)"},
+ // Zero padding does not apply to infinities and NaN.
+ {"%08f", complex(posInf, posInf), "( +Inf +Infi)"},
+ {"%-08g", complex(negInf, negInf), "(-Inf -Inf i)"},
+ {"%-08G", complex(NaN, NaN), "(NaN +NaN i)"},
// erroneous formats
{"", 2, "%!(EXTRA int=2)"},
{"%g", 1.23456789e3, "1234.56789"},
{"%g", 1.23456789e-3, "0.00123456789"},
{"%g", 1.23456789e20, "1.23456789e+20"},
- {"%20e", math.Inf(1), " +Inf"},
- {"% 20f", math.Inf(1), " Inf"},
- {"%+20f", math.Inf(1), " +Inf"},
- {"% +20f", math.Inf(1), " +Inf"},
- {"%-20f", math.Inf(-1), "-Inf "},
- {"%20g", math.NaN(), " NaN"},
- {"%+20f", math.NaN(), " +NaN"},
- {"% +20f", math.NaN(), " +NaN"},
- {"% -20f", math.NaN(), " NaN "},
- {"%+-20f", math.NaN(), "+NaN "},
// arrays
{"%v", array, "[1 2 3 4 5]"},
{"%# -6d", []byte{1, 11, 111}, "[ 1 11 111 ]"},
{"%#+-6d", [3]byte{1, 11, 111}, "[+1 +11 +111 ]"},
+ // floates with %v
+ {"%v", 1.2345678, "1.2345678"},
+ {"%v", float32(1.2345678), "1.2345678"},
+
// complexes with %v
{"%v", 1 + 2i, "(1+2i)"},
{"%v", complex64(1 + 2i), "(1+2i)"},
- {"%v", complex128(1 + 2i), "(1+2i)"},
// structs
{"%v", A{1, 2, "a", []int{1, 2}}, `{1 2 a [1 2]}`},
{"%#v", bslice, `[]fmt_test.renamedUint8{0x1, 0x2, 0x3, 0x4, 0x5}`},
{"%#v", []byte(nil), "[]byte(nil)"},
{"%#v", []int32(nil), "[]int32(nil)"},
+ {"%#v", 1.2345678, "1.2345678"},
+ {"%#v", float32(1.2345678), "1.2345678"},
// slices with other formats
{"%#x", []int{1, 2, 15}, `[0x1 0x2 0xf]`},
// be fetched directly, the lookup fails and returns a
// zero reflect.Value, which formats as <nil>.
// This test is just to check that it shows the two NaNs at all.
- {"%v", map[float64]int{math.NaN(): 1, math.NaN(): 2}, "map[NaN:<nil> NaN:<nil>]"},
+ {"%v", map[float64]int{NaN: 1, NaN: 2}, "map[NaN:<nil> NaN:<nil>]"},
// Used to crash because nByte didn't allow for a sign.
{"%b", int64(-1 << 63), zeroFill("-1", 63, "")},
// Complex numbers: exhaustively tested in TestComplexFormatting.
{"%7.2f", 1 + 2i, "( 1.00 +2.00i)"},
{"%+07.2f", -1 - 2i, "(-001.00-002.00i)"},
- // Zero padding does not apply to infinities and NaN.
- {"%020f", math.Inf(-1), " -Inf"},
- {"%020f", math.Inf(+1), " +Inf"},
- {"%020f", math.NaN(), " NaN"},
- {"% 020f", math.Inf(-1), " -Inf"},
- {"% 020f", math.Inf(+1), " Inf"},
- {"% 020f", math.NaN(), " NaN"},
- {"%+020f", math.Inf(-1), " -Inf"},
- {"%+020f", math.Inf(+1), " +Inf"},
- {"%+020f", math.NaN(), " +NaN"},
- {"%-020f", math.Inf(-1), "-Inf "},
- {"%-020f", math.Inf(+1), "+Inf "},
- {"%-020f", math.NaN(), "NaN "},
+
{"%20f", -1.0, " -1.000000"},
// Make sure we can handle very large widths.
{"%0100f", -1.0, zeroFill("-", 99, "1.000000")},
{"%☠", []uint8{0}, "%!☠([]uint8=[0])"},
{"%☠", [1]byte{0}, "%!☠([1]uint8=[0])"},
{"%☠", [1]uint8{0}, "%!☠([1]uint8=[0])"},
+ {"%☠", 1.2345678, "%!☠(float64=1.2345678)"},
+ {"%☠", float32(1.2345678), "%!☠(float32=1.2345678)"},
+ {"%☠", 1.2345678 + 1.2345678i, "%!☠(complex128=(1.2345678+1.2345678i))"},
+ {"%☠", complex64(1.2345678 + 1.2345678i), "%!☠(complex64=(1.2345678+1.2345678i))"},
}
// zeroFill generates zero-filled strings of the specified width. The length
// thing as if done by hand with two singleton prints.
func TestComplexFormatting(t *testing.T) {
var yesNo = []bool{true, false}
- var values = []float64{1, 0, -1, math.Inf(1), math.Inf(-1), math.NaN()}
+ var values = []float64{1, 0, -1, posInf, negInf, NaN}
for _, plus := range yesNo {
for _, zero := range yesNo {
for _, space := range yesNo {
})
}
+func BenchmarkSprintfComplex(b *testing.B) {
+ b.RunParallel(func(pb *testing.PB) {
+ for pb.Next() {
+ Sprintf("%f", 5.23184+5.23184i)
+ }
+ })
+}
+
func BenchmarkSprintfBoolean(b *testing.B) {
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
}
}
-// floating-point
-
-func doPrec(f *fmt, def int) int {
+// fmt_float formats a float64. It assumes that verb is a valid format specifier
+// for strconv.AppendFloat and therefore fits into a byte.
+func (f *fmt) fmt_float(v float64, size int, verb rune, prec int) {
+ // Explicit precision in format specifier overrules default precision.
if f.precPresent {
- return f.prec
+ prec = f.prec
}
- return def
-}
-
-// formatFloat formats a float64; it is an efficient equivalent to f.pad(strconv.FormatFloat()...).
-func (f *fmt) formatFloat(v float64, verb byte, prec, n int) {
// Format number, reserving space for leading + sign if needed.
- num := strconv.AppendFloat(f.intbuf[:1], v, verb, prec, n)
+ num := strconv.AppendFloat(f.intbuf[:1], v, byte(verb), prec, size)
if num[1] == '-' || num[1] == '+' {
num = num[1:]
} else {
// No sign to show and the number is positive; just print the unsigned number.
f.pad(num[1:])
}
-
-// fmt_e64 formats a float64 in the form -1.23e+12.
-func (f *fmt) fmt_e64(v float64) { f.formatFloat(v, 'e', doPrec(f, 6), 64) }
-
-// fmt_E64 formats a float64 in the form -1.23E+12.
-func (f *fmt) fmt_E64(v float64) { f.formatFloat(v, 'E', doPrec(f, 6), 64) }
-
-// fmt_f64 formats a float64 in the form -1.23.
-func (f *fmt) fmt_f64(v float64) { f.formatFloat(v, 'f', doPrec(f, 6), 64) }
-
-// fmt_g64 formats a float64 in the 'f' or 'e' form according to size.
-func (f *fmt) fmt_g64(v float64) { f.formatFloat(v, 'g', doPrec(f, -1), 64) }
-
-// fmt_G64 formats a float64 in the 'f' or 'E' form according to size.
-func (f *fmt) fmt_G64(v float64) { f.formatFloat(v, 'G', doPrec(f, -1), 64) }
-
-// fmt_fb64 formats a float64 in the form -123p3 (exponent is power of 2).
-func (f *fmt) fmt_fb64(v float64) { f.formatFloat(v, 'b', 0, 64) }
-
-// float32
-// cannot defer to float64 versions
-// because it will get rounding wrong in corner cases.
-
-// fmt_e32 formats a float32 in the form -1.23e+12.
-func (f *fmt) fmt_e32(v float32) { f.formatFloat(float64(v), 'e', doPrec(f, 6), 32) }
-
-// fmt_E32 formats a float32 in the form -1.23E+12.
-func (f *fmt) fmt_E32(v float32) { f.formatFloat(float64(v), 'E', doPrec(f, 6), 32) }
-
-// fmt_f32 formats a float32 in the form -1.23.
-func (f *fmt) fmt_f32(v float32) { f.formatFloat(float64(v), 'f', doPrec(f, 6), 32) }
-
-// fmt_g32 formats a float32 in the 'f' or 'e' form according to size.
-func (f *fmt) fmt_g32(v float32) { f.formatFloat(float64(v), 'g', doPrec(f, -1), 32) }
-
-// fmt_G32 formats a float32 in the 'f' or 'E' form according to size.
-func (f *fmt) fmt_G32(v float32) { f.formatFloat(float64(v), 'G', doPrec(f, -1), 32) }
-
-// fmt_fb32 formats a float32 in the form -123p3 (exponent is power of 2).
-func (f *fmt) fmt_fb32(v float32) { f.formatFloat(float64(v), 'b', 0, 32) }
-
-// fmt_c64 formats a complex64 according to the verb.
-func (f *fmt) fmt_c64(v complex64, verb rune) {
- f.fmt_complex(float64(real(v)), float64(imag(v)), 32, verb)
-}
-
-// fmt_c128 formats a complex128 according to the verb.
-func (f *fmt) fmt_c128(v complex128, verb rune) {
- f.fmt_complex(real(v), imag(v), 64, verb)
-}
-
-// fmt_complex formats a complex number as (r+ji).
-func (f *fmt) fmt_complex(r, j float64, size int, verb rune) {
- f.buf.WriteByte('(')
- oldPlus := f.plus
- oldSpace := f.space
- for i := 0; ; i++ {
- switch verb {
- case 'b':
- f.formatFloat(r, 'b', 0, size)
- case 'e':
- f.formatFloat(r, 'e', doPrec(f, 6), size)
- case 'E':
- f.formatFloat(r, 'E', doPrec(f, 6), size)
- case 'f', 'F':
- f.formatFloat(r, 'f', doPrec(f, 6), size)
- case 'g':
- f.formatFloat(r, 'g', doPrec(f, -1), size)
- case 'G':
- f.formatFloat(r, 'G', doPrec(f, -1), size)
- }
- if i != 0 {
- break
- }
- // Imaginary part always has a sign.
- f.plus = true
- f.space = false
- r = j
- }
- f.space = oldSpace
- f.plus = oldPlus
- f.buf.WriteString("i)")
-}
}
}
-func (p *pp) fmtFloat32(v float32, verb rune) {
+// fmtFloat formats a float. The default precision for each verb
+// is specified as last argument in the call to fmt_float.
+func (p *pp) fmtFloat(v float64, size int, verb rune) {
switch verb {
- case 'b':
- p.fmt.fmt_fb32(v)
- case 'e':
- p.fmt.fmt_e32(v)
- case 'E':
- p.fmt.fmt_E32(v)
- case 'f', 'F':
- p.fmt.fmt_f32(v)
- case 'g', 'v':
- p.fmt.fmt_g32(v)
- case 'G':
- p.fmt.fmt_G32(v)
- default:
- p.badVerb(verb)
- }
-}
-
-func (p *pp) fmtFloat64(v float64, verb rune) {
- switch verb {
- case 'b':
- p.fmt.fmt_fb64(v)
- case 'e':
- p.fmt.fmt_e64(v)
- case 'E':
- p.fmt.fmt_E64(v)
- case 'f', 'F':
- p.fmt.fmt_f64(v)
- case 'g', 'v':
- p.fmt.fmt_g64(v)
- case 'G':
- p.fmt.fmt_G64(v)
- default:
- p.badVerb(verb)
- }
-}
-
-func (p *pp) fmtComplex64(v complex64, verb rune) {
- switch verb {
- case 'b', 'e', 'E', 'f', 'F', 'g', 'G':
- p.fmt.fmt_c64(v, verb)
case 'v':
- p.fmt.fmt_c64(v, 'g')
+ p.fmt.fmt_float(v, size, 'g', -1)
+ case 'b', 'g', 'G':
+ p.fmt.fmt_float(v, size, verb, -1)
+ case 'f', 'e', 'E':
+ p.fmt.fmt_float(v, size, verb, 6)
+ case 'F':
+ p.fmt.fmt_float(v, size, 'f', 6)
default:
p.badVerb(verb)
}
}
-func (p *pp) fmtComplex128(v complex128, verb rune) {
+// fmtComplex formats a complex number v with
+// r = real(v) and j = imag(v) as (r+ji) using
+// fmtFloat for r and j formatting.
+func (p *pp) fmtComplex(v complex128, size int, verb rune) {
+ // Make sure any unsupported verbs are found before the
+ // calls to fmtFloat to not generate an incorrect error string.
switch verb {
- case 'b', 'e', 'E', 'f', 'F', 'g', 'G':
- p.fmt.fmt_c128(v, verb)
- case 'v':
- p.fmt.fmt_c128(v, 'g')
+ case 'v', 'b', 'g', 'G', 'f', 'F', 'e', 'E':
+ oldPlus := p.fmt.plus
+ p.buf.WriteByte('(')
+ p.fmtFloat(real(v), size/2, verb)
+ // Imaginary part always has a sign.
+ p.fmt.plus = true
+ p.fmtFloat(imag(v), size/2, verb)
+ p.buf.WriteString("i)")
+ p.fmt.plus = oldPlus
default:
p.badVerb(verb)
}
case bool:
p.fmtBool(f, verb)
case float32:
- p.fmtFloat32(f, verb)
+ p.fmtFloat(float64(f), 32, verb)
case float64:
- p.fmtFloat64(f, verb)
+ p.fmtFloat(f, 64, verb)
case complex64:
- p.fmtComplex64(f, verb)
+ p.fmtComplex(complex128(f), 64, verb)
case complex128:
- p.fmtComplex128(f, verb)
+ p.fmtComplex(f, 128, verb)
case int:
p.fmtInt64(int64(f), verb)
case int8:
p.fmtInt64(f.Int(), verb)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
p.fmtUint64(f.Uint(), verb)
- case reflect.Float32, reflect.Float64:
- if f.Type().Size() == 4 {
- p.fmtFloat32(float32(f.Float()), verb)
- } else {
- p.fmtFloat64(f.Float(), verb)
- }
- case reflect.Complex64, reflect.Complex128:
- if f.Type().Size() == 8 {
- p.fmtComplex64(complex64(f.Complex()), verb)
- } else {
- p.fmtComplex128(f.Complex(), verb)
- }
+ case reflect.Float32:
+ p.fmtFloat(f.Float(), 32, verb)
+ case reflect.Float64:
+ p.fmtFloat(f.Float(), 64, verb)
+ case reflect.Complex64:
+ p.fmtComplex(f.Complex(), 64, verb)
+ case reflect.Complex128:
+ p.fmtComplex(f.Complex(), 128, verb)
case reflect.String:
p.fmtString(f.String(), verb)
case reflect.Map: