--- /dev/null
+// $G $D/$F.go && $L $F.$A && ./$A.out
+
+// Copyright 2009 The Go Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style
+// license that can be found in the LICENSE file.
+
+// A little test program for rational arithmetics.
+// Computes a Hilbert matrix, its inverse, multiplies them
+// and verifies that the product is the identity matrix.
+
+package main
+
+import Big "bignum"
+import Fmt "fmt"
+
+
+func assert(p bool) {
+ if !p {
+ panic("assert failed");
+ }
+}
+
+
+var (
+ Zero = Big.Rat(0, 1);
+ One = Big.Rat(1, 1);
+)
+
+
+type Matrix struct {
+ n, m int;
+ a *[]*Big.Rational;
+}
+
+
+func (a *Matrix) at(i, j int) *Big.Rational {
+ assert(0 <= i && i < a.n && 0 <= j && j < a.m);
+ return a.a[i*a.m + j];
+}
+
+
+func (a *Matrix) set(i, j int, x *Big.Rational) {
+ assert(0 <= i && i < a.n && 0 <= j && j < a.m);
+ a.a[i*a.m + j] = x;
+}
+
+
+func NewMatrix(n, m int) *Matrix {
+ assert(0 <= n && 0 <= m);
+ a := new(Matrix);
+ a.n = n;
+ a.m = m;
+ a.a = new([]*Big.Rational, n*m);
+ return a;
+}
+
+
+func NewUnit(n int) *Matrix {
+ a := NewMatrix(n, n);
+ for i := 0; i < n; i++ {
+ for j := 0; j < n; j++ {
+ x := Zero;
+ if i == j {
+ x = One;
+ }
+ a.set(i, j, x);
+ }
+ }
+ return a;
+}
+
+
+func NewHilbert(n int) *Matrix {
+ a := NewMatrix(n, n);
+ for i := 0; i < n; i++ {
+ for j := 0; j < n; j++ {
+ x := Big.Rat(1, i + j + 1);
+ a.set(i, j, x);
+ }
+ }
+ return a;
+}
+
+
+func MakeRat(x *Big.Natural) *Big.Rational {
+ return Big.MakeRat(Big.MakeInt(false, x), Big.Nat(1));
+}
+
+
+func NewInverseHilbert(n int) *Matrix {
+ a := NewMatrix(n, n);
+ for i := 0; i < n; i++ {
+ for j := 0; j < n; j++ {
+ x0 := One;
+ if (i+j)&1 != 0 {
+ x0 = x0.Neg();
+ }
+ x1 := Big.Rat(i + j + 1, 1);
+ x2 := MakeRat(Big.Binomial(uint(n+i), uint(n-j-1)));
+ x3 := MakeRat(Big.Binomial(uint(n+j), uint(n-i-1)));
+ x4 := MakeRat(Big.Binomial(uint(i+j), uint(i)));
+ x4 = x4.Mul(x4);
+ a.set(i, j, x0.Mul(x1).Mul(x2).Mul(x3).Mul(x4));
+ }
+ }
+ return a;
+}
+
+
+func (a *Matrix) Mul(b *Matrix) *Matrix {
+ assert(a.m == b.n);
+ c := NewMatrix(a.n, b.m);
+ for i := 0; i < c.n; i++ {
+ for j := 0; j < c.m; j++ {
+ x := Zero;
+ for k := 0; k < a.m; k++ {
+ x = x.Add(a.at(i, k).Mul(b.at(k, j)));
+ }
+ c.set(i, j, x);
+ }
+ }
+ return c;
+}
+
+
+func (a *Matrix) Eql(b *Matrix) bool {
+ if a.n != b.n || a.m != b.m {
+ return false;
+ }
+ for i := 0; i < a.n; i++ {
+ for j := 0; j < a.m; j++ {
+ if a.at(i, j).Cmp(b.at(i,j)) != 0 {
+ return false;
+ }
+ }
+ }
+ return true;
+}
+
+
+func (a *Matrix) String() string {
+ s := "";
+ for i := 0; i < a.n; i++ {
+ for j := 0; j < a.m; j++ {
+ x := a.at(i, j); // BUG 6g bug
+ s += Fmt.sprintf("\t%s", x);
+ }
+ s += "\n";
+ }
+ return s;
+}
+
+
+func main() {
+ n := 10;
+ a := NewHilbert(n);
+ b := NewInverseHilbert(n);
+ I := NewUnit(n);
+ ab := a.Mul(b);
+ if !ab.Eql(I) {
+ Fmt.println("a =", a);
+ Fmt.println("b =", b);
+ Fmt.println("a*b =", ab);
+ Fmt.println("I =", I);
+ panic("FAILED");
+ }
+}