There appears to be a typo in the description of
the recursive division algorithm.
Two things seem suspicious with the original comment:
1. It is talking about choosing s, but s doesn't
appear anywhere in the equation.
2. The math in the equation is incorrect.
Where
B = len(v)/2
s = B - 1
Proof that it is incorrect:
len(v) - B >= B + 1
len(v) - len(v)/2 >= len(v)/2 + 1
This doesn't hold if len(v) is even, e.g. 10:
10 - 10/2 >= 10/2 + 1
10 - 5 >= 5 + 1
5 >= 6 // this is false
The new equation will be the following,
which will be mathematically correct:
len(v) - s >= B + 1
len(v) - (len(v)/2 - 1) >= len(v)/2 + 1
len(v) - len(v)/2 + 1 >= len(v)/2 + 1
len(v) - len(v)/2 >= len(v)/2
This holds if len(v) is even or odd.
e.g. 10
10 - 10/2 >= 10/2
10 - 5 >= 5
5 >= 5
e.g. 11
11 - 11/2 >= 11/2
11 - 5 >= 5
6 >= 5
Change-Id: If77ce09286cf7038637b5dfd0fb7d4f828023f56
Reviewed-on: https://go-review.googlesource.com/c/go/+/287372
Run-TryBot: Katie Hockman <katie@golang.org>
Reviewed-by: Filippo Valsorda <filippo@golang.org>
Trust: Katie Hockman <katie@golang.org>
// then floor(u1/v1) >= floor(u/v)
//
// Moreover, the difference is at most 2 if len(v1) >= len(u/v)
- // We choose s = B-1 since len(v)-B >= B+1 >= len(u/v)
+ // We choose s = B-1 since len(v)-s >= B+1 >= len(u/v)
s := (B - 1)
// Except for the first step, the top bits are always
// a division remainder, so the quotient length is <= n.