return nil
}
+// fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
+// This has better constant-time properties than Euclid's method (implemented
+// in math/big.Int.ModInverse) although math/big itself isn't strictly
+// constant-time so it's not perfect.
+func fermatInverse(k, P *big.Int) *big.Int {
+ two := big.NewInt(2)
+ pMinus2 := new(big.Int).Sub(P, two)
+ return new(big.Int).Exp(k, pMinus2, P)
+}
+
// Sign signs an arbitrary length hash (which should be the result of hashing a
// larger message) using the private key, priv. It returns the signature as a
// pair of integers. The security of the private key depends on the entropy of
}
}
- kInv := new(big.Int).ModInverse(k, priv.Q)
+ kInv := fermatInverse(k, priv.Q)
r = new(big.Int).Exp(priv.G, k, priv.P)
r.Mod(r, priv.Q)
return ret
}
+// fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
+// This has better constant-time properties than Euclid's method (implemented
+// in math/big.Int.ModInverse) although math/big itself isn't strictly
+// constant-time so it's not perfect.
+func fermatInverse(k, N *big.Int) *big.Int {
+ two := big.NewInt(2)
+ nMinus2 := new(big.Int).Sub(N, two)
+ return new(big.Int).Exp(k, nMinus2, N)
+}
+
// Sign signs an arbitrary length hash (which should be the result of hashing a
// larger message) using the private key, priv. It returns the signature as a
// pair of integers. The security of the private key depends on the entropy of
return
}
- kInv = new(big.Int).ModInverse(k, N)
+ kInv = fermatInverse(k, N)
r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
r.Mod(r, N)
if r.Sign() != 0 {