move test.go to alll_test.go.
R=r
DELTA=1024 (521 added, 425 deleted, 78 changed)
OCL=19687
CL=19695
O1=\
atan.$O\
+ exp.$O\
fabs.$O\
floor.$O\
fmod.$O\
O2=\
asin.$O\
atan2.$O\
- exp.$O\
-
-O3=\
pow.$O\
sinh.$O\
-O4=\
+O3=\
tanh.$O\
-math.a: a1 a2 a3 a4
+math.a: a1 a2 a3
a1: $(O1)
- $(AR) grc math.a atan.$O fabs.$O floor.$O fmod.$O hypot.$O log.$O pow10.$O sin.$O sqrt.$O tan.$O
+ $(AR) grc math.a atan.$O exp.$O fabs.$O floor.$O fmod.$O hypot.$O log.$O pow10.$O sin.$O sqrt.$O tan.$O
rm -f $(O1)
a2: $(O2)
- $(AR) grc math.a asin.$O atan2.$O exp.$O
+ $(AR) grc math.a asin.$O atan2.$O pow.$O sinh.$O
rm -f $(O2)
a3: $(O3)
- $(AR) grc math.a pow.$O sinh.$O
- rm -f $(O3)
-
-a4: $(O4)
$(AR) grc math.a tanh.$O
- rm -f $(O4)
+ rm -f $(O3)
newpkg: clean
$(AR) grc math.a
$(O1): newpkg
$(O2): a1
$(O3): a2
-$(O4): a3
nuke: clean
rm -f $(GOROOT)/pkg/math.a
var exp = []float64 {
1.4533071302642137e+02,
2.2958822575694450e+03,
- 7.5814542574851664e-01,
+ 7.5814542574851666e-01,
6.6668778421791010e-03,
1.5310493273896035e+04,
1.8659907517999329e+01,
-9.9999994291374019e-01,
}
-func Close(a,b float64) bool {
+func Tolerance(a,b,e float64) bool {
d := a-b;
if d < 0 {
d = -d;
}
- e := float64(1e-14);
if a != 0 {
e = e*a;
if e < 0 {
}
return d < e;
}
+func Close(a,b float64) bool {
+ return Tolerance(a, b, 1e-14);
+}
+func VeryClose(a,b float64) bool {
+ return Tolerance(a, b, 4e-16);
+}
export func TestAsin(t *testing.T) {
for i := 0; i < len(vf); i++ {
- if f := math.Asin(vf[i]/10); !Close(asin[i], f) {
+ if f := math.Asin(vf[i]/10); !VeryClose(asin[i], f) {
t.Errorf("math.Asin(%g) = %g, want %g\n", vf[i]/10, f, asin[i]);
}
}
export func TestAtan(t *testing.T) {
for i := 0; i < len(vf); i++ {
- if f := math.Atan(vf[i]); !Close(atan[i], f) {
+ if f := math.Atan(vf[i]); !VeryClose(atan[i], f) {
t.Errorf("math.Atan(%g) = %g, want %g\n", vf[i], f, atan[i]);
}
}
export func TestExp(t *testing.T) {
for i := 0; i < len(vf); i++ {
- if f := math.Exp(vf[i]); !Close(exp[i], f) {
+ if f := math.Exp(vf[i]); !VeryClose(exp[i], f) {
t.Errorf("math.Exp(%g) = %g, want %g\n", vf[i], f, exp[i]);
}
}
export func TestFloor(t *testing.T) {
for i := 0; i < len(vf); i++ {
- if f := math.Floor(vf[i]); !Close(floor[i], f) {
+ if f := math.Floor(vf[i]); floor[i] != f {
t.Errorf("math.Floor(%g) = %g, want %g\n", vf[i], f, floor[i]);
}
}
export func TestLog(t *testing.T) {
for i := 0; i < len(vf); i++ {
a := math.Fabs(vf[i]);
- if f := math.Log(a); !Close(log[i], f) {
- t.Errorf("math.Log(%g) = %g, want %g\n", a, f, floor[i]);
+ if f := math.Log(a); log[i] != f {
+ t.Errorf("math.Log(%g) = %g, want %g\n", a, f, log[i]);
}
}
+ const Ln10 = 2.30258509299404568401799145468436421;
+ if f := math.Log(10); f != Ln10 {
+ t.Errorf("math.Log(%g) = %g, want %g\n", 10, f, Ln10);
+ }
}
export func TestPow(t *testing.T) {
export func TestSinh(t *testing.T) {
for i := 0; i < len(vf); i++ {
- if f := math.Sinh(vf[i]); !Close(sinh[i], f) {
+ if f := math.Sinh(vf[i]); !VeryClose(sinh[i], f) {
t.Errorf("math.Sinh(%g) = %g, want %g\n", vf[i], f, sinh[i]);
}
}
export func TestSqrt(t *testing.T) {
for i := 0; i < len(vf); i++ {
a := math.Fabs(vf[i]);
- if f := math.Sqrt(a); !Close(sqrt[i], f) {
+ if f := math.Sqrt(a); !VeryClose(sqrt[i], f) {
t.Errorf("math.Sqrt(%g) = %g, want %g\n", a, f, floor[i]);
}
}
export func TestTanh(t *testing.T) {
for i := 0; i < len(vf); i++ {
- if f := math.Tanh(vf[i]); !Close(tanh[i], f) {
+ if f := math.Tanh(vf[i]); !VeryClose(tanh[i], f) {
t.Errorf("math.Tanh(%g) = %g, want %g\n", vf[i], f, tanh[i]);
}
}
export func TestHypot(t *testing.T) {
for i := 0; i < len(vf); i++ {
a := math.Fabs(tanh[i]*math.Sqrt(2));
- if f := math.Hypot(tanh[i], tanh[i]); !Close(a, f) {
+ if f := math.Hypot(tanh[i], tanh[i]); !VeryClose(a, f) {
t.Errorf("math.Hypot(%g, %g) = %g, want %g\n", tanh[i], tanh[i], f, a);
}
}
}
-
import "math"
-/*
- * exp returns the exponential func of its
- * floating-point argument.
- *
- * The coefficients are #1069 from Hart and Cheney. (22.35D)
- */
-
-const
-(
- p0 = .2080384346694663001443843411e7;
- p1 = .3028697169744036299076048876e5;
- p2 = .6061485330061080841615584556e2;
- q0 = .6002720360238832528230907598e7;
- q1 = .3277251518082914423057964422e6;
- q2 = .1749287689093076403844945335e4;
- log2e = .14426950408889634073599247e1;
- sqrt2 = .14142135623730950488016887e1;
- maxf = 10000;
+// The original C code, the long comment, and the constants
+// below are from FreeBSD's /usr/src/lib/msun/src/e_exp.c
+// and came with this notice. The go code is a simplified
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+//
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+//
+// exp(x)
+// Returns the exponential of x.
+//
+// Method
+// 1. Argument reduction:
+// Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
+// Given x, find r and integer k such that
+//
+// x = k*ln2 + r, |r| <= 0.5*ln2.
+//
+// Here r will be represented as r = hi-lo for better
+// accuracy.
+//
+// 2. Approximation of exp(r) by a special rational function on
+// the interval [0,0.34658]:
+// Write
+// R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
+// We use a special Remes algorithm on [0,0.34658] to generate
+// a polynomial of degree 5 to approximate R. The maximum error
+// of this polynomial approximation is bounded by 2**-59. In
+// other words,
+// R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
+// (where z=r*r, and the values of P1 to P5 are listed below)
+// and
+// | 5 | -59
+// | 2.0+P1*z+...+P5*z - R(z) | <= 2
+// | |
+// The computation of exp(r) thus becomes
+// 2*r
+// exp(r) = 1 + -------
+// R - r
+// r*R1(r)
+// = 1 + r + ----------- (for better accuracy)
+// 2 - R1(r)
+// where
+// 2 4 10
+// R1(r) = r - (P1*r + P2*r + ... + P5*r ).
+//
+// 3. Scale back to obtain exp(x):
+// From step 1, we have
+// exp(x) = 2^k * exp(r)
+//
+// Special cases:
+// exp(INF) is INF, exp(NaN) is NaN;
+// exp(-INF) is 0, and
+// for finite argument, only exp(0)=1 is exact.
+//
+// Accuracy:
+// according to an error analysis, the error is always less than
+// 1 ulp (unit in the last place).
+//
+// Misc. info.
+// For IEEE double
+// if x > 7.09782712893383973096e+02 then exp(x) overflow
+// if x < -7.45133219101941108420e+02 then exp(x) underflow
+//
+// Constants:
+// The hexadecimal values are the intended ones for the following
+// constants. The decimal values may be used, provided that the
+// compiler will convert from decimal to binary accurately enough
+// to produce the hexadecimal values shown.
+
+export const (
+ Ln2 = 0.693147180559945309417232121458176568;
+ HalfLn2 = 0.346573590279972654708616060729088284;
+
+ Ln2Hi = 6.93147180369123816490e-01;
+ Ln2Lo = 1.90821492927058770002e-10;
+ Log2e = 1.44269504088896338700e+00;
+
+ P1 = 1.66666666666666019037e-01; /* 0x3FC55555; 0x5555553E */
+ P2 = -2.77777777770155933842e-03; /* 0xBF66C16C; 0x16BEBD93 */
+ P3 = 6.61375632143793436117e-05; /* 0x3F11566A; 0xAF25DE2C */
+ P4 = -1.65339022054652515390e-06; /* 0xBEBBBD41; 0xC5D26BF1 */
+ P5 = 4.13813679705723846039e-08; /* 0x3E663769; 0x72BEA4D0 */
+
+ Overflow = 7.09782712893383973096e+02;
+ Underflow = -7.45133219101941108420e+02;
+ NearZero = 1.0/(1<<28); // 2^-28
)
-export func Exp(arg float64) float64 {
- if arg == 0. {
- return 1;
- }
- if arg < -maxf {
+export func Exp(x float64) float64 {
+ // special cases
+ switch {
+ case sys.isNaN(x) || sys.isInf(x, 1):
+ return x;
+ case sys.isInf(x, -1):
+ return 0;
+ case x > Overflow:
+ return sys.Inf(1);
+ case x < Underflow:
return 0;
+ case -NearZero < x && x < NearZero:
+ return 1;
}
- if arg > maxf {
- return sys.Inf(1)
+
+ // reduce; computed as r = hi - lo for extra precision.
+ var k int;
+ switch {
+ case x < 0:
+ k = int(Log2e*x - 0.5);
+ case x > 0:
+ k = int(Log2e*x + 0.5);
}
+ hi := x - float64(k)*Ln2Hi;
+ lo := float64(k)*Ln2Lo;
+ r := hi - lo;
- x := arg*log2e;
- ent := int(Floor(x));
- fract := (x-float64(ent)) - 0.5;
- xsq := fract*fract;
- temp1 := ((p2*xsq+p1)*xsq+p0)*fract;
- temp2 := ((xsq+q2)*xsq+q1)*xsq + q0;
- return sys.ldexp(sqrt2*(temp2+temp1)/(temp2-temp1), ent);
+ // compute
+ t := r * r;
+ c := r - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
+ y := 1 - ((lo - (r*c)/(2-c)) - hi);
+ // TODO(rsc): make sure sys.ldexp can handle boundary k
+ return sys.ldexp(y, k);
}
package math
-/*
- * Log returns the natural logarithm of its floating
- * point argument.
- *
- * The coefficients are #2705 from Hart & Cheney. (19.38D)
- *
- * It calls frexp.
- */
+// The original C code, the long comment, and the constants
+// below are from FreeBSD's /usr/src/lib/msun/src/e_log.c
+// and came with this notice. The go code is a simpler
+// version of the original C.
+//
+// ====================================================
+// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunPro, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// __ieee754_log(x)
+// Return the logrithm of x
+//
+// Method :
+// 1. Argument Reduction: find k and f such that
+// x = 2^k * (1+f),
+// where sqrt(2)/2 < 1+f < sqrt(2) .
+//
+// 2. Approximation of log(1+f).
+// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+// = 2s + s*R
+// We use a special Reme algorithm on [0,0.1716] to generate
+// a polynomial of degree 14 to approximate R The maximum error
+// of this polynomial approximation is bounded by 2**-58.45. In
+// other words,
+// 2 4 6 8 10 12 14
+// R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
+// (the values of Lg1 to Lg7 are listed in the program)
+// and
+// | 2 14 | -58.45
+// | Lg1*s +...+Lg7*s - R(z) | <= 2
+// | |
+// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+// In order to guarantee error in log below 1ulp, we compute log
+// by
+// log(1+f) = f - s*(f - R) (if f is not too large)
+// log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
+//
+// 3. Finally, log(x) = k*ln2 + log(1+f).
+// = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+// Here ln2 is split into two floating point number:
+// ln2_hi + ln2_lo,
+// where n*ln2_hi is always exact for |n| < 2000.
+//
+// Special cases:
+// log(x) is NaN with signal if x < 0 (including -INF) ;
+// log(+INF) is +INF; log(0) is -INF with signal;
+// log(NaN) is that NaN with no signal.
+//
+// Accuracy:
+// according to an error analysis, the error is always less than
+// 1 ulp (unit in the last place).
+//
+// Constants:
+// The hexadecimal values are the intended ones for the following
+// constants. The decimal values may be used, provided that the
+// compiler will convert from decimal to binary accurately enough
+// to produce the hexadecimal values shown.
-const
-(
- log2 = .693147180559945309e0;
- ln10u1 = .4342944819032518276511;
- sqrto2 = .707106781186547524e0;
- p0 = -.240139179559210510e2;
- p1 = .309572928215376501e2;
- p2 = -.963769093377840513e1;
- p3 = .421087371217979714e0;
- q0 = -.120069589779605255e2;
- q1 = .194809660700889731e2;
- q2 = -.891110902798312337e1;
+const (
+ Ln2Hi = 6.93147180369123816490e-01; /* 3fe62e42 fee00000 */
+ Ln2Lo = 1.90821492927058770002e-10; /* 3dea39ef 35793c76 */
+ Lg1 = 6.666666666666735130e-01; /* 3FE55555 55555593 */
+ Lg2 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */
+ Lg3 = 2.857142874366239149e-01; /* 3FD24924 94229359 */
+ Lg4 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */
+ Lg5 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */
+ Lg6 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */
+ Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
+
+ Two54 = 1<<54; // 2^54
+ TwoM20 = 1.0/(1<<20); // 2^-20
+ TwoM1022 = 2.2250738585072014e-308; // 2^-1022
+ Sqrt2 = 1.41421356237309504880168872420969808;
)
-export func Log(arg float64) float64 {
- if arg <= 0 {
+export func Log(x float64) float64 {
+ // special cases
+ switch {
+ case sys.isNaN(x) || sys.isInf(x, 1):
+ return x;
+ case x < 0:
return sys.NaN();
+ case x == 0:
+ return sys.Inf(-1);
}
- x, exp := sys.frexp(arg);
- for x < 0.5 {
- x = x*2;
- exp = exp-1;
- }
- if x < sqrto2 {
- x = x*2;
- exp = exp-1;
+ // reduce
+ f1, ki := sys.frexp(x);
+ if f1 < Sqrt2/2 {
+ f1 *= 2;
+ ki--;
}
+ f := f1 - 1;
+ k := float64(ki);
- z := (x-1) / (x+1);
- zsq := z*z;
-
- temp := ((p3*zsq + p2)*zsq + p1)*zsq + p0;
- temp = temp/(((zsq + q2)*zsq + q1)*zsq + q0);
- temp = temp*z + float64(exp)*log2;
- return temp;
+ // compute
+ s := f/(2+f);
+ s2 := s*s;
+ s4 := s2*s2;
+ t1 := s2*(Lg1 + s4*(Lg3 + s4*(Lg5 + s4*Lg7)));
+ t2 := s4*(Lg2 + s4*(Lg4 + s4*Lg6));
+ R := t1 + t2;
+ hfsq := 0.5*f*f;
+ return k*Ln2Hi - ((hfsq-(s*(hfsq+R)+k*Ln2Lo)) - f);
}
+const
+(
+ ln10u1 = .4342944819032518276511;
+)
+
export func Log10(arg float64) float64 {
if arg <= 0 {
return sys.NaN();
}
return Log(arg) * ln10u1;
}
+
+
import "math"
-/*
- arg1 ^ arg2 (exponentiation)
- */
+// x^y: exponentation
+export func Pow(x, y float64) float64 {
+ // TODO: x or y NaN, ±Inf, maybe ±0.
+ switch {
+ case y == 0:
+ return 1;
+ case y == 1:
+ return x;
+ case x == 0 && y > 0:
+ return 0;
+ case x == 0 && y < 0:
+ return sys.Inf(1);
+ case y == 0.5:
+ return Sqrt(x);
+ case y == -0.5:
+ return 1 / Sqrt(x);
+ }
-export func Pow(arg1,arg2 float64) float64 {
- if arg2 < 0 {
- return 1/Pow(arg1, -arg2);
+ absy := y;
+ flip := false;
+ if absy < 0 {
+ absy = -absy;
+ flip = true;
+ }
+ yi, yf := sys.modf(absy);
+ if yf != 0 && x < 0 {
+ return sys.NaN();
+ }
+ if yi >= 1<<63 {
+ return Exp(y * Log(x));
}
- if arg1 <= 0 {
- if(arg1 == 0) {
- if arg2 <= 0 {
- return sys.NaN();
- }
- return 0;
- }
- temp := Floor(arg2);
- if temp != arg2 {
- panic(sys.NaN());
- }
+ ans := float64(1);
- l := int32(temp);
- if l&1 != 0 {
- return -Pow(-arg1, arg2);
+ // ans *= x^yf
+ if yf != 0 {
+ if yf > 0.5 {
+ yf--;
+ yi++;
}
- return Pow(-arg1, arg2);
+ ans = Exp(yf * Log(x));
}
- temp := Floor(arg2);
- if temp != arg2 {
- if arg2-temp == .5 {
- if temp == 0 {
- return Sqrt(arg1);
+ // ans *= x^yi
+ // by multiplying in successive squarings
+ // of x according to bits of yi.
+ // accumulate powers of two into exp.
+ // will still have to do ans *= 2^exp later.
+ x1, xe := sys.frexp(x);
+ exp := 0;
+ if i := int64(yi); i != 0 {
+ for {
+ if i&1 == 1 {
+ ans *= x1;
+ exp += xe;
+ }
+ i >>= 1;
+ if i == 0 {
+ break;
+ }
+ x1 *= x1;
+ xe <<= 1;
+ if x1 < .5 {
+ x1 += x1;
+ xe--;
}
- return Pow(arg1, temp) * Sqrt(arg1);
}
- return Exp(arg2 * Log(arg1));
}
- l := int32(temp);
- temp = 1;
- for {
- if l&1 != 0 {
- temp = temp*arg1;
- }
- l >>= 1;
- if l == 0 {
- return temp;
- }
- arg1 *= arg1;
+ // ans *= 2^exp
+ // if flip { ans = 1 / ans }
+ // but in the opposite order
+ if flip {
+ ans = 1 / ans;
+ exp = -exp;
}
- panic("unreachable")
+ return sys.ldexp(ans, exp);
}
+
package math
+/*
+ Coefficients are #3370 from Hart & Cheney (18.80D).
+*/
const
(
p0 = .1357884097877375669092680e8;
q1 = .4081792252343299749395779e6;
q2 = .9463096101538208180571257e4;
q3 = .1326534908786136358911494e3;
+
piu2 = .6366197723675813430755350e0; // 2/pi
)