}
rbrace := p.expect(token.RBRACE)
- // TODO(gri): store struct scope in AST
return &ast.StructType{pos, &ast.FieldList{lbrace, list, rbrace}, false}
}
}
rbrace := p.expect(token.RBRACE)
- // TODO(gri): store interface scope in AST
return &ast.InterfaceType{pos, &ast.FieldList{lbrace, list, rbrace}, false}
}
case token.ARROW:
// send statement
arrow := p.pos
- p.next() // consume "<-"
+ p.next()
y := p.parseRhs()
return &ast.SendStmt{x[0], arrow, y}, false
case token.INC, token.DEC:
// increment or decrement
s := &ast.IncDecStmt{x[0], p.pos, p.tok}
- p.next() // consume "++" or "--"
+ p.next()
return s, false
}
return
}
-func (p *parser) parseCaseClause(exprSwitch bool) *ast.CaseClause {
+func (p *parser) parseCaseClause(typeSwitch bool) *ast.CaseClause {
if p.trace {
defer un(trace(p, "CaseClause"))
}
var list []ast.Expr
if p.tok == token.CASE {
p.next()
- if exprSwitch {
- list = p.parseRhsList()
- } else {
+ if typeSwitch {
list = p.parseTypeList()
+ } else {
+ list = p.parseRhsList()
}
} else {
p.expect(token.DEFAULT)
return &ast.CaseClause{pos, list, colon, body}
}
-func isExprSwitch(s ast.Stmt) bool {
- if s == nil {
- return true
- }
- if e, ok := s.(*ast.ExprStmt); ok {
- if a, ok := e.X.(*ast.TypeAssertExpr); ok {
- return a.Type != nil // regular type assertion
- }
- return true
+func isTypeSwitchAssert(x ast.Expr) bool {
+ a, ok := x.(*ast.TypeAssertExpr)
+ return ok && a.Type == nil
+}
+
+func isTypeSwitchGuard(s ast.Stmt) bool {
+ switch t := s.(type) {
+ case *ast.ExprStmt:
+ // x.(nil)
+ return isTypeSwitchAssert(t.X)
+ case *ast.AssignStmt:
+ // v := x.(nil)
+ return len(t.Lhs) == 1 && t.Tok == token.DEFINE && len(t.Rhs) == 1 && isTypeSwitchAssert(t.Rhs[0])
}
return false
}
s1 = s2
s2 = nil
if p.tok != token.LBRACE {
+ // A TypeSwitchGuard may declare a variable in addition
+ // to the variable declared in the initial SimpleStmt.
+ // Introduce extra scope to avoid redeclaration errors:
+ //
+ // switch t := 0; t := x.(T) { ... }
+ //
+ // (this code is not valid Go because the first t will
+ // cannot be accessed and thus is never used, the extra
+ // scope is needed for the correct error message).
+ //
+ // If we don't have a type switch, s2 must be an expression.
+ // Having the extra nested but empty scope won't affect it.
+ p.openScope()
+ defer p.closeScope()
s2, _ = p.parseSimpleStmt(basic)
}
}
p.exprLev = prevLev
}
- exprSwitch := isExprSwitch(s2)
+ typeSwitch := isTypeSwitchGuard(s2)
lbrace := p.expect(token.LBRACE)
var list []ast.Stmt
for p.tok == token.CASE || p.tok == token.DEFAULT {
- list = append(list, p.parseCaseClause(exprSwitch))
+ list = append(list, p.parseCaseClause(typeSwitch))
}
rbrace := p.expect(token.RBRACE)
p.expectSemi()
body := &ast.BlockStmt{lbrace, list, rbrace}
- if exprSwitch {
- return &ast.SwitchStmt{pos, s1, p.makeExpr(s2), body}
+ if typeSwitch {
+ return &ast.TypeSwitchStmt{pos, s1, s2, body}
}
- // type switch
- // TODO(gri): do all the checks!
- return &ast.TypeSwitchStmt{pos, s1, s2, body}
+
+ return &ast.SwitchStmt{pos, s1, p.makeExpr(s2), body}
}
func (p *parser) parseCommClause() *ast.CommClause {
defer un(trace(p, "Receiver"))
}
- pos := p.pos
par := p.parseParameters(scope, false)
// must have exactly one receiver
if par.NumFields() != 1 {
- p.errorExpected(pos, "exactly one receiver")
- // TODO determine a better range for BadExpr below
- par.List = []*ast.Field{&ast.Field{Type: &ast.BadExpr{pos, pos}}}
+ p.errorExpected(par.Opening, "exactly one receiver")
+ par.List = []*ast.Field{&ast.Field{Type: &ast.BadExpr{par.Opening, par.Closing + 1}}}
return par
}