func TestTypes(t *testing.T) {
for i, tt := range typeTests {
- testType(t, i, NewValue(tt.i).(*StructValue).Field(0).Type(), tt.s)
+ testType(t, i, NewValue(tt.i).Field(0).Type(), tt.s)
}
}
func TestSet(t *testing.T) {
for i, tt := range valueTests {
v := NewValue(tt.i)
- switch v := v.(type) {
- case *IntValue:
- switch v.Type().Kind() {
- case Int:
- v.Set(132)
- case Int8:
- v.Set(8)
- case Int16:
- v.Set(16)
- case Int32:
- v.Set(32)
- case Int64:
- v.Set(64)
- }
- case *UintValue:
- switch v.Type().Kind() {
- case Uint:
- v.Set(132)
- case Uint8:
- v.Set(8)
- case Uint16:
- v.Set(16)
- case Uint32:
- v.Set(32)
- case Uint64:
- v.Set(64)
- }
- case *FloatValue:
- switch v.Type().Kind() {
- case Float32:
- v.Set(256.25)
- case Float64:
- v.Set(512.125)
- }
- case *ComplexValue:
- switch v.Type().Kind() {
- case Complex64:
- v.Set(532.125 + 10i)
- case Complex128:
- v.Set(564.25 + 1i)
- }
- case *StringValue:
- v.Set("stringy cheese")
- case *BoolValue:
- v.Set(true)
+ switch v.Kind() {
+ case Int:
+ v.SetInt(132)
+ case Int8:
+ v.SetInt(8)
+ case Int16:
+ v.SetInt(16)
+ case Int32:
+ v.SetInt(32)
+ case Int64:
+ v.SetInt(64)
+ case Uint:
+ v.SetUint(132)
+ case Uint8:
+ v.SetUint(8)
+ case Uint16:
+ v.SetUint(16)
+ case Uint32:
+ v.SetUint(32)
+ case Uint64:
+ v.SetUint(64)
+ case Float32:
+ v.SetFloat(256.25)
+ case Float64:
+ v.SetFloat(512.125)
+ case Complex64:
+ v.SetComplex(532.125 + 10i)
+ case Complex128:
+ v.SetComplex(564.25 + 1i)
+ case String:
+ v.SetString("stringy cheese")
+ case Bool:
+ v.SetBool(true)
}
s := valueToString(v)
if s != tt.s {
func TestSetValue(t *testing.T) {
for i, tt := range valueTests {
v := NewValue(tt.i)
- switch v := v.(type) {
- case *IntValue:
- switch v.Type().Kind() {
- case Int:
- v.SetValue(NewValue(int(132)))
- case Int8:
- v.SetValue(NewValue(int8(8)))
- case Int16:
- v.SetValue(NewValue(int16(16)))
- case Int32:
- v.SetValue(NewValue(int32(32)))
- case Int64:
- v.SetValue(NewValue(int64(64)))
- }
- case *UintValue:
- switch v.Type().Kind() {
- case Uint:
- v.SetValue(NewValue(uint(132)))
- case Uint8:
- v.SetValue(NewValue(uint8(8)))
- case Uint16:
- v.SetValue(NewValue(uint16(16)))
- case Uint32:
- v.SetValue(NewValue(uint32(32)))
- case Uint64:
- v.SetValue(NewValue(uint64(64)))
- }
- case *FloatValue:
- switch v.Type().Kind() {
- case Float32:
- v.SetValue(NewValue(float32(256.25)))
- case Float64:
- v.SetValue(NewValue(512.125))
- }
- case *ComplexValue:
- switch v.Type().Kind() {
- case Complex64:
- v.SetValue(NewValue(complex64(532.125 + 10i)))
- case Complex128:
- v.SetValue(NewValue(complex128(564.25 + 1i)))
- }
-
- case *StringValue:
- v.SetValue(NewValue("stringy cheese"))
- case *BoolValue:
- v.SetValue(NewValue(true))
+ switch v.Kind() {
+ case Int:
+ v.Set(NewValue(int(132)))
+ case Int8:
+ v.Set(NewValue(int8(8)))
+ case Int16:
+ v.Set(NewValue(int16(16)))
+ case Int32:
+ v.Set(NewValue(int32(32)))
+ case Int64:
+ v.Set(NewValue(int64(64)))
+ case Uint:
+ v.Set(NewValue(uint(132)))
+ case Uint8:
+ v.Set(NewValue(uint8(8)))
+ case Uint16:
+ v.Set(NewValue(uint16(16)))
+ case Uint32:
+ v.Set(NewValue(uint32(32)))
+ case Uint64:
+ v.Set(NewValue(uint64(64)))
+ case Float32:
+ v.Set(NewValue(float32(256.25)))
+ case Float64:
+ v.Set(NewValue(512.125))
+ case Complex64:
+ v.Set(NewValue(complex64(532.125 + 10i)))
+ case Complex128:
+ v.Set(NewValue(complex128(564.25 + 1i)))
+ case String:
+ v.Set(NewValue("stringy cheese"))
+ case Bool:
+ v.Set(NewValue(true))
}
s := valueToString(v)
if s != tt.s {
func TestArrayElemSet(t *testing.T) {
v := NewValue([10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})
- v.(*ArrayValue).Elem(4).(*IntValue).Set(123)
+ v.Index(4).SetInt(123)
s := valueToString(v)
const want = "[10]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}"
if s != want {
}
v = NewValue([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})
- v.(*SliceValue).Elem(4).(*IntValue).Set(123)
+ v.Index(4).SetInt(123)
s = valueToString(v)
const want1 = "[]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}"
if s != want1 {
var i int32 = 1234
vip := NewValue(&ip)
vi := NewValue(i)
- vip.(*PtrValue).Elem().(*PtrValue).PointTo(vi)
+ vip.Elem().Set(vi.Addr())
if *ip != 1234 {
t.Errorf("got %d, want 1234", *ip)
}
ip = nil
- vp := NewValue(ip).(*PtrValue)
- vp.PointTo(vp.Elem())
+ vp := NewValue(ip)
+ vp.Set(Zero(vp.Type()))
if ip != nil {
t.Errorf("got non-nil (%p), want nil", ip)
}
var i int32 = 1234
ip := &i
vip := NewValue(&ip)
- vip.(*PtrValue).Elem().(*PtrValue).Set(nil)
+ vip.Elem().Set(Zero(vip.Elem().Type()))
if ip != nil {
t.Errorf("got non-nil (%d), want nil", *ip)
}
func TestMapSetNil(t *testing.T) {
m := make(map[string]int)
vm := NewValue(&m)
- vm.(*PtrValue).Elem().(*MapValue).Set(nil)
+ vm.Elem().Set(Zero(vm.Elem().Type()))
if m != nil {
t.Errorf("got non-nil (%p), want nil", m)
}
func TestAll(t *testing.T) {
testType(t, 1, Typeof((int8)(0)), "int8")
- testType(t, 2, Typeof((*int8)(nil)).(*PtrType).Elem(), "int8")
+ testType(t, 2, Typeof((*int8)(nil)).Elem(), "int8")
typ := Typeof((*struct {
c chan *int32
d float32
})(nil))
testType(t, 3, typ, "*struct { c chan *int32; d float32 }")
- etyp := typ.(*PtrType).Elem()
+ etyp := typ.Elem()
testType(t, 4, etyp, "struct { c chan *int32; d float32 }")
- styp := etyp.(*StructType)
+ styp := etyp
f := styp.Field(0)
testType(t, 5, f.Type, "chan *int32")
typ = Typeof([32]int32{})
testType(t, 7, typ, "[32]int32")
- testType(t, 8, typ.(*ArrayType).Elem(), "int32")
+ testType(t, 8, typ.Elem(), "int32")
typ = Typeof((map[string]*int32)(nil))
testType(t, 9, typ, "map[string] *int32")
- mtyp := typ.(*MapType)
+ mtyp := typ
testType(t, 10, mtyp.Key(), "string")
testType(t, 11, mtyp.Elem(), "*int32")
typ = Typeof((chan<- string)(nil))
testType(t, 12, typ, "chan<- string")
- testType(t, 13, typ.(*ChanType).Elem(), "string")
+ testType(t, 13, typ.Elem(), "string")
// make sure tag strings are not part of element type
typ = Typeof(struct {
d []uint32 "TAG"
- }{}).(*StructType).Field(0).Type
+ }{}).Field(0).Type
testType(t, 14, typ, "[]uint32")
}
}
inter.e = 123.456
v1 := NewValue(&inter)
- v2 := v1.(*PtrValue).Elem().(*StructValue).Field(0)
+ v2 := v1.Elem().Field(0)
assert(t, v2.Type().String(), "interface { }")
- i2 := v2.(*InterfaceValue).Interface()
+ i2 := v2.Interface()
v3 := NewValue(i2)
assert(t, v3.Type().String(), "float64")
}
}
inter.e = 123.456
v1 := NewValue(&inter)
- v2 := v1.(*PtrValue).Elem().(*StructValue).Field(0)
+ v2 := v1.Elem().Field(0)
assert(t, v2.Type().String(), "interface { }")
- v3 := v2.(*InterfaceValue).Elem()
+ v3 := v2.Elem()
assert(t, v3.Type().String(), "float64")
i3 := v2.Interface()
e0[j] = NewValue(e)
}
// Convert extra from []int to *SliceValue.
- e1 := NewValue(test.extra).(*SliceValue)
+ e1 := NewValue(test.extra)
// Test Append.
- a0 := NewValue(test.orig).(*SliceValue)
+ a0 := NewValue(test.orig)
have0 := Append(a0, e0...).Interface().([]int)
if !DeepEqual(have0, want) {
t.Errorf("Append #%d: have %v, want %v", i, have0, want)
t.Errorf("Append #%d extraLen: have %v, want %v", i, len(test.extra), extraLen)
}
// Test AppendSlice.
- a1 := NewValue(test.orig).(*SliceValue)
+ a1 := NewValue(test.orig)
have1 := AppendSlice(a1, e1).Interface().([]int)
if !DeepEqual(have1, want) {
t.Errorf("AppendSlice #%d: have %v, want %v", i, have1, want)
t.Fatalf("b != c before test")
}
}
- aa := NewValue(a).(*SliceValue)
- ab := NewValue(b).(*SliceValue)
+ aa := NewValue(a)
+ ab := NewValue(b)
for tocopy := 1; tocopy <= 7; tocopy++ {
aa.SetLen(tocopy)
Copy(ab, aa)
func TestTypeof(t *testing.T) {
for _, test := range deepEqualTests {
v := NewValue(test.a)
- if v == nil {
+ if !v.IsValid() {
continue
}
typ := Typeof(test.a)
func check2ndField(x interface{}, offs uintptr, t *testing.T) {
- s := NewValue(x).(*StructValue)
- f := s.Type().(*StructType).Field(1)
+ s := NewValue(x)
+ f := s.Type().Field(1)
if f.Offset != offs {
t.Error("mismatched offsets in structure alignment:", f.Offset, offs)
}
check2ndField(x1, uintptr(unsafe.Pointer(&x1.f))-uintptr(unsafe.Pointer(&x1)), t)
}
-type IsNiller interface {
- IsNil() bool
-}
-
func Nil(a interface{}, t *testing.T) {
- n := NewValue(a).(*StructValue).Field(0).(IsNiller)
+ n := NewValue(a).Field(0)
if !n.IsNil() {
t.Errorf("%v should be nil", a)
}
}
func NotNil(a interface{}, t *testing.T) {
- n := NewValue(a).(*StructValue).Field(0).(IsNiller)
+ n := NewValue(a).Field(0)
if n.IsNil() {
t.Errorf("value of type %v should not be nil", NewValue(a).Type().String())
}
}
func TestIsNil(t *testing.T) {
- // These do not implement IsNil
- doNotNil := []interface{}{int(0), float32(0), struct{ a int }{}}
- for _, ts := range doNotNil {
- ty := Typeof(ts)
- v := MakeZero(ty)
- if _, ok := v.(IsNiller); ok {
- t.Errorf("%s is nilable; should not be", ts)
- }
- }
-
- // These do implement IsNil.
+ // These implement IsNil.
// Wrap in extra struct to hide interface type.
doNil := []interface{}{
struct{ x *int }{},
struct{ x []string }{},
}
for _, ts := range doNil {
- ty := Typeof(ts).(*StructType).Field(0).Type
- v := MakeZero(ty)
- if _, ok := v.(IsNiller); !ok {
- t.Errorf("%s %T is not nilable; should be", ts, v)
- }
+ ty := Typeof(ts).Field(0).Type
+ v := Zero(ty)
+ v.IsNil() // panics if not okay to call
}
// Check the implementations
}
s.w = os.Stdout
- v := Indirect(NewValue(&s)).(*StructValue).Field(0).Interface()
+ v := Indirect(NewValue(&s)).Field(0).Interface()
if v != s.w.(interface{}) {
t.Error("Interface() on interface: ", v, s.w)
}
// and setting that copy to "bye" should
// not change the value stored in i.
- v.(*StringValue).Set("bye")
+ v.SetString("bye")
if i.(string) != "hello" {
t.Errorf(`Set("bye") changed i to %s`, i.(string))
}
// the same should be true of smaller items.
i = 123
v = NewValue(i)
- v.(*IntValue).Set(234)
+ v.SetInt(234)
if i.(int) != 123 {
t.Errorf("Set(234) changed i to %d", i.(int))
}
func TestNilPtrValueSub(t *testing.T) {
var pi *int
- if pv := NewValue(pi).(*PtrValue); pv.Elem() != nil {
- t.Error("NewValue((*int)(nil)).(*PtrValue).Elem() != nil")
+ if pv := NewValue(pi); pv.Elem().IsValid() {
+ t.Error("NewValue((*int)(nil)).Elem().IsValid()")
}
}
func TestMap(t *testing.T) {
m := map[string]int{"a": 1, "b": 2}
- mv := NewValue(m).(*MapValue)
+ mv := NewValue(m)
if n := mv.Len(); n != len(m) {
t.Errorf("Len = %d, want %d", n, len(m))
}
- keys := mv.Keys()
+ keys := mv.MapKeys()
i := 0
- newmap := MakeMap(mv.Type().(*MapType))
+ newmap := MakeMap(mv.Type())
for k, v := range m {
// Check that returned Keys match keys in range.
// These aren't required to be in the same order,
// the test easier.
if i >= len(keys) {
t.Errorf("Missing key #%d %q", i, k)
- } else if kv := keys[i].(*StringValue); kv.Get() != k {
- t.Errorf("Keys[%d] = %q, want %q", i, kv.Get(), k)
+ } else if kv := keys[i]; kv.String() != k {
+ t.Errorf("Keys[%q] = %d, want %d", i, kv.Int(), k)
}
i++
// Check that value lookup is correct.
- vv := mv.Elem(NewValue(k))
- if vi := vv.(*IntValue).Get(); vi != int64(v) {
+ vv := mv.MapIndex(NewValue(k))
+ if vi := vv.Int(); vi != int64(v) {
t.Errorf("Key %q: have value %d, want %d", k, vi, v)
}
// Copy into new map.
- newmap.SetElem(NewValue(k), NewValue(v))
+ newmap.SetMapIndex(NewValue(k), NewValue(v))
}
- vv := mv.Elem(NewValue("not-present"))
- if vv != nil {
+ vv := mv.MapIndex(NewValue("not-present"))
+ if vv.IsValid() {
t.Errorf("Invalid key: got non-nil value %s", valueToString(vv))
}
}
}
- newmap.SetElem(NewValue("a"), nil)
+ newmap.SetMapIndex(NewValue("a"), Value{})
v, ok := newm["a"]
if ok {
t.Errorf("newm[\"a\"] = %d after delete", v)
}
- mv = NewValue(&m).(*PtrValue).Elem().(*MapValue)
- mv.Set(nil)
+ mv = NewValue(&m).Elem()
+ mv.Set(Zero(mv.Type()))
if m != nil {
t.Errorf("mv.Set(nil) failed")
}
func TestChan(t *testing.T) {
for loop := 0; loop < 2; loop++ {
var c chan int
- var cv *ChanValue
+ var cv Value
// check both ways to allocate channels
switch loop {
case 1:
c = make(chan int, 1)
- cv = NewValue(c).(*ChanValue)
+ cv = NewValue(c)
case 0:
- cv = MakeChan(Typeof(c).(*ChanType), 1)
+ cv = MakeChan(Typeof(c), 1)
c = cv.Interface().(chan int)
}
// Recv
c <- 3
- if i, ok := cv.Recv(); i.(*IntValue).Get() != 3 || !ok {
- t.Errorf("native send 3, reflect Recv %d, %t", i.(*IntValue).Get(), ok)
+ if i, ok := cv.Recv(); i.Int() != 3 || !ok {
+ t.Errorf("native send 3, reflect Recv %d, %t", i.Int(), ok)
}
// TryRecv fail
val, ok := cv.TryRecv()
- if val != nil || ok {
+ if val.IsValid() || ok {
t.Errorf("TryRecv on empty chan: %s, %t", valueToString(val), ok)
}
// TryRecv success
c <- 4
val, ok = cv.TryRecv()
- if val == nil {
+ if !val.IsValid() {
t.Errorf("TryRecv on ready chan got nil")
- } else if i := val.(*IntValue).Get(); i != 4 || !ok {
+ } else if i := val.Int(); i != 4 || !ok {
t.Errorf("native send 4, TryRecv %d, %t", i, ok)
}
// Close
c <- 123
cv.Close()
- if i, ok := cv.Recv(); i.(*IntValue).Get() != 123 || !ok {
- t.Errorf("send 123 then close; Recv %d, %t", i.(*IntValue).Get(), ok)
+ if i, ok := cv.Recv(); i.Int() != 123 || !ok {
+ t.Errorf("send 123 then close; Recv %d, %t", i.Int(), ok)
}
- if i, ok := cv.Recv(); i.(*IntValue).Get() != 0 || ok {
- t.Errorf("after close Recv %d, %t", i.(*IntValue).Get(), ok)
+ if i, ok := cv.Recv(); i.Int() != 0 || ok {
+ t.Errorf("after close Recv %d, %t", i.Int(), ok)
}
}
// check creation of unbuffered channel
var c chan int
- cv := MakeChan(Typeof(c).(*ChanType), 0)
+ cv := MakeChan(Typeof(c), 0)
c = cv.Interface().(chan int)
if cv.TrySend(NewValue(7)) {
t.Errorf("TrySend on sync chan succeeded")
}
- if v, ok := cv.TryRecv(); v != nil || ok {
+ if v, ok := cv.TryRecv(); v.IsValid() || ok {
t.Errorf("TryRecv on sync chan succeeded")
}
// len/cap
- cv = MakeChan(Typeof(c).(*ChanType), 10)
+ cv = MakeChan(Typeof(c), 10)
c = cv.Interface().(chan int)
for i := 0; i < 3; i++ {
c <- i
}
func TestFunc(t *testing.T) {
- ret := NewValue(dummy).(*FuncValue).Call([]Value{NewValue(byte(10)), NewValue(20), NewValue(byte(30))})
+ ret := NewValue(dummy).Call([]Value{NewValue(byte(10)), NewValue(20), NewValue(byte(30))})
if len(ret) != 3 {
t.Fatalf("Call returned %d values, want 3", len(ret))
}
- i := ret[0].(*UintValue).Get()
- j := ret[1].(*IntValue).Get()
- k := ret[2].(*UintValue).Get()
+ i := byte(ret[0].Uint())
+ j := int(ret[1].Int())
+ k := byte(ret[2].Uint())
if i != 10 || j != 20 || k != 30 {
t.Errorf("Call returned %d, %d, %d; want 10, 20, 30", i, j, k)
}
func TestMethod(t *testing.T) {
// Non-curried method of type.
p := Point{3, 4}
- i := Typeof(p).Method(0).Func.Call([]Value{NewValue(p), NewValue(10)})[0].(*IntValue).Get()
+ i := Typeof(p).Method(0).Func.Call([]Value{NewValue(p), NewValue(10)})[0].Int()
if i != 250 {
t.Errorf("Type Method returned %d; want 250", i)
}
- i = Typeof(&p).Method(0).Func.Call([]Value{NewValue(&p), NewValue(10)})[0].(*IntValue).Get()
+ i = Typeof(&p).Method(0).Func.Call([]Value{NewValue(&p), NewValue(10)})[0].Int()
if i != 250 {
t.Errorf("Pointer Type Method returned %d; want 250", i)
}
// Curried method of value.
- i = NewValue(p).Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get()
+ i = NewValue(p).Method(0).Call([]Value{NewValue(10)})[0].Int()
if i != 250 {
t.Errorf("Value Method returned %d; want 250", i)
}
// Curried method of pointer.
- i = NewValue(&p).Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get()
+ i = NewValue(&p).Method(0).Call([]Value{NewValue(10)})[0].Int()
if i != 250 {
t.Errorf("Value Method returned %d; want 250", i)
}
// Curried method of pointer to value.
- i = NewValue(p).Addr().Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get()
+ i = NewValue(p).Addr().Method(0).Call([]Value{NewValue(10)})[0].Int()
if i != 250 {
t.Errorf("Value Method returned %d; want 250", i)
}
Dist(int) int
}
}{p}
- pv := NewValue(s).(*StructValue).Field(0)
- i = pv.Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get()
+ pv := NewValue(s).Field(0)
+ i = pv.Method(0).Call([]Value{NewValue(10)})[0].Int()
if i != 250 {
t.Errorf("Interface Method returned %d; want 250", i)
}
Dist(int) int
}
}
- sv := NewValue(&s).(*PtrValue).Elem().(*StructValue)
- sv.Field(0).(*InterfaceValue).Set(NewValue(p))
+ sv := NewValue(&s).Elem()
+ sv.Field(0).Set(NewValue(p))
if q := s.I.(*Point); q != p {
t.Errorf("i: have %p want %p", q, p)
}
- pv := sv.Field(1).(*InterfaceValue)
+ pv := sv.Field(1)
pv.Set(NewValue(p))
if q := s.P.(*Point); q != p {
t.Errorf("i: have %p want %p", q, p)
}
- i := pv.Method(0).Call([]Value{NewValue(10)})[0].(*IntValue).Get()
+ i := pv.Method(0).Call([]Value{NewValue(10)})[0].Int()
if i != 250 {
t.Errorf("Interface Method returned %d; want 250", i)
}
var field StructField
var ok bool
var t1 T1
- type1 := Typeof(t1).(*StructType)
+ type1 := Typeof(t1)
if field, ok = type1.FieldByName("int"); !ok {
t.Error("no field 'int'")
}
func TestFieldByIndex(t *testing.T) {
for _, test := range fieldTests {
- s := Typeof(test.s).(*StructType)
+ s := Typeof(test.s)
f := s.FieldByIndex(test.index)
if f.Name != "" {
if test.index != nil {
}
if test.value != 0 {
- v := NewValue(test.s).(*StructValue).FieldByIndex(test.index)
- if v != nil {
+ v := NewValue(test.s).FieldByIndex(test.index)
+ if v.IsValid() {
if x, ok := v.Interface().(int); ok {
if x != test.value {
t.Errorf("%s%v is %d; want %d", s.Name(), test.index, x, test.value)
func TestFieldByName(t *testing.T) {
for _, test := range fieldTests {
- s := Typeof(test.s).(*StructType)
+ s := Typeof(test.s)
f, found := s.FieldByName(test.name)
if found {
if test.index != nil {
}
if test.value != 0 {
- v := NewValue(test.s).(*StructValue).FieldByName(test.name)
- if v != nil {
+ v := NewValue(test.s).FieldByName(test.name)
+ if v.IsValid() {
if x, ok := v.Interface().(int); ok {
if x != test.value {
t.Errorf("%s.%s is %d; want %d", s.Name(), test.name, x, test.value)
func TestDotDotDot(t *testing.T) {
// Test example from FuncType.DotDotDot documentation.
var f func(x int, y ...float64)
- typ := Typeof(f).(*FuncType)
+ typ := Typeof(f)
if typ.NumIn() == 2 && typ.In(0) == Typeof(int(0)) {
- sl, ok := typ.In(1).(*SliceType)
- if ok {
+ sl := typ.In(1)
+ if sl.Kind() == Slice {
if sl.Elem() == Typeof(0.0) {
// ok
return
func TestNestedMethods(t *testing.T) {
typ := Typeof((*outer)(nil))
- if typ.NumMethod() != 1 || typ.Method(0).Func.Get() != NewValue((*outer).m).(*FuncValue).Get() {
+ if typ.NumMethod() != 1 || typ.Method(0).Func.Pointer() != NewValue((*outer).m).Pointer() {
t.Errorf("Wrong method table for outer: (m=%p)", (*outer).m)
for i := 0; i < typ.NumMethod(); i++ {
m := typ.Method(i)
- t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Get())
+ t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Pointer())
}
}
}
func TestEmbeddedMethods(t *testing.T) {
typ := Typeof((*outerInt)(nil))
- if typ.NumMethod() != 1 || typ.Method(0).Func.Get() != NewValue((*outerInt).m).(*FuncValue).Get() {
+ if typ.NumMethod() != 1 || typ.Method(0).Func.Pointer() != NewValue((*outerInt).m).Pointer() {
t.Errorf("Wrong method table for outerInt: (m=%p)", (*outerInt).m)
for i := 0; i < typ.NumMethod(); i++ {
m := typ.Method(i)
- t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Get())
+ t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Pointer())
}
}
i := &innerInt{3}
- if v := NewValue(i).Method(0).Call(nil)[0].(*IntValue).Get(); v != 3 {
+ if v := NewValue(i).Method(0).Call(nil)[0].Int(); v != 3 {
t.Errorf("i.m() = %d, want 3", v)
}
o := &outerInt{1, innerInt{2}}
- if v := NewValue(o).Method(0).Call(nil)[0].(*IntValue).Get(); v != 2 {
+ if v := NewValue(o).Method(0).Call(nil)[0].Int(); v != 2 {
t.Errorf("i.m() = %d, want 2", v)
}
typ = PtrTo(typ)
}
for i = 0; i < 100; i++ {
- typ = typ.(*PtrType).Elem()
+ typ = typ.Elem()
}
if typ != Typeof(i) {
t.Errorf("after 100 PtrTo and Elem, have %s, want %s", typ, Typeof(i))
}
v := NewValue(&p)
- v = v.(*PtrValue).Elem()
+ v = v.Elem()
v = v.Addr()
- v = v.(*PtrValue).Elem()
- v = v.(*StructValue).Field(0)
- v.(*IntValue).Set(2)
+ v = v.Elem()
+ v = v.Field(0)
+ v.SetInt(2)
if p.X != 2 {
t.Errorf("Addr.Elem.Set failed to set value")
}
// Exercises generation of PtrTypes not present in the binary.
v = NewValue(&p)
v = v.Addr()
- v = v.(*PtrValue).Elem()
- v = v.(*PtrValue).Elem()
+ v = v.Elem()
+ v = v.Elem()
v = v.Addr()
- v = v.(*PtrValue).Elem()
- v = v.(*StructValue).Field(0)
- v.(*IntValue).Set(3)
+ v = v.Elem()
+ v = v.Field(0)
+ v.SetInt(3)
if p.X != 3 {
t.Errorf("Addr.Elem.Set failed to set value")
}
v = NewValue(p)
v0 := v
v = v.Addr()
- v = v.(*PtrValue).Elem()
- v = v.(*StructValue).Field(0)
- v.(*IntValue).Set(4)
+ v = v.Elem()
+ v = v.Field(0)
+ v.SetInt(4)
if p.X != 3 { // should be unchanged from last time
t.Errorf("somehow value Set changed original p")
}
// The reflect package implements run-time reflection, allowing a program to
// manipulate objects with arbitrary types. The typical use is to take a
// value with static type interface{} and extract its dynamic type
-// information by calling Typeof, which returns an object with interface
-// type Type. That contains a pointer to a struct of type *StructType,
-// *IntType, etc. representing the details of the underlying type. A type
-// switch or type assertion can reveal which.
+// information by calling Typeof, which returns a Type.
//
-// A call to NewValue creates a Value representing the run-time data; it
-// contains a *StructValue, *IntValue, etc. MakeZero takes a Type and
-// returns a Value representing a zero value for that type.
+// A call to NewValue returns a Value representing the run-time data.
+// Zero takes a Type and returns a Value representing a zero value
+// for that type.
package reflect
import (
"unsafe"
)
+// Type is the representation of a Go type.
+//
+// Not all methods apply to all kinds of types. Restrictions,
+// if any, are noted in the documentation for each method.
+// Use the Kind method to find out the kind of type before
+// calling kind-specific methods. Calling a method
+// inappropriate to the kind of type causes a run-time panic.
+type Type interface {
+ // Methods applicable to all types.
+
+ // Align returns the alignment in bytes of a value of
+ // this type when allocated in memory.
+ Align() int
+
+ // FieldAlign returns the alignment in bytes of a value of
+ // this type when used as a field in a struct.
+ FieldAlign() int
+
+ // Method returns the i'th method in the type's method set.
+ // It panics if i is not in the range [0, NumMethod()).
+ //
+ // For a non-interface type T or *T, the returned Method's Type and Func
+ // fields describe a function whose first argument is the receiver.
+ //
+ // For an interface type, the returned Method's Type field gives the
+ // method signature, without a receiver, and the Func field is nil.
+ Method(int) Method
+
+ // NumMethods returns the number of methods in the type's method set.
+ NumMethod() int
+
+ // Name returns the type's name within its package.
+ // It returns an empty string for unnamed types.
+ Name() string
+
+ // PkgPath returns the type's package path.
+ // The package path is a full package import path like "container/vector".
+ // PkgPath returns an empty string for unnamed types.
+ PkgPath() string
+
+ // Size returns the number of bytes needed to store
+ // a value of the given type; it is analogous to unsafe.Sizeof.
+ Size() uintptr
+
+ // String returns a string representation of the type.
+ // The string representation may use shortened package names
+ // (e.g., vector instead of "container/vector") and is not
+ // guaranteed to be unique among types. To test for equality,
+ // compare the Types directly.
+ String() string
+
+ // Kind returns the specific kind of this type.
+ Kind() Kind
+
+ // Methods applicable only to some types, depending on Kind.
+ // The methods allowed for each kind are:
+ //
+ // Int*, Uint*, Float*, Complex*: Bits
+ // Array: Elem, Len
+ // Chan: ChanDir, Elem
+ // Func: In, NumIn, Out, NumOut, IsVariadic.
+ // Map: Key, Elem
+ // Ptr: Elem
+ // Slice: Elem
+ // Struct: Field, FieldByIndex, FieldByName, FieldByNameFunc, NumField
+
+ // Bits returns the size of the type in bits.
+ // It panics if the type's Kind is not one of the
+ // sized or unsized Int, Uint, Float, or Complex kinds.
+ Bits() int
+
+ // ChanDir returns a channel type's direction.
+ // It panics if the type's Kind is not Chan.
+ ChanDir() ChanDir
+
+ // IsVariadic returns true if a function type's final input parameter
+ // is a "..." parameter. If so, t.In(t.NumIn() - 1) returns the parameter's
+ // implicit actual type []T.
+ //
+ // For concreteness, if t represents func(x int, y ... float), then
+ //
+ // t.NumIn() == 2
+ // t.In(0) is the reflect.Type for "int"
+ // t.In(1) is the reflect.Type for "[]float"
+ // t.IsVariadic() == true
+ //
+ // IsVariadic panics if the type's Kind is not Func.
+ IsVariadic() bool
+
+ // Elem returns a type's element type.
+ // It panics if the type's Kind is not Array, Chan, Map, Ptr, or Slice.
+ Elem() Type
+
+ // Field returns a struct type's i'th field.
+ // It panics if the type's Kind is not Struct.
+ // It panics if i is not in the range [0, NumField()).
+ Field(i int) StructField
+
+ // FieldByIndex returns the nested field corresponding
+ // to the index sequence. It is equivalent to calling Field
+ // successively for each index i.
+ // It panics if the type's Kind is not Struct.
+ FieldByIndex(index []int) StructField
+
+ // FieldByName returns the struct field with the given name
+ // and a boolean indicating if the field was found.
+ FieldByName(name string) (StructField, bool)
+
+ // FieldByNameFunc returns the first struct field with a name
+ // that satisfies the match function and a boolean indicating if
+ // the field was found.
+ FieldByNameFunc(match func(string) bool) (StructField, bool)
+
+ // In returns the type of a function type's i'th input parameter.
+ // It panics if the type's Kind is not Func.
+ // It panics if i is not in the range [0, NumIn()).
+ In(i int) Type
+
+ // Key returns a map type's key type.
+ // It panics if the type's Kind is not Map.
+ Key() Type
+
+ // Len returns an array type's length.
+ // It panics if the type's Kind is not Array.
+ Len() int
+
+ // NumField returns a struct type's field count.
+ // It panics if the type's Kind is not Struct.
+ NumField() int
+
+ // NumIn returns a function type's input parameter count.
+ // It panics if the type's Kind is not Func.
+ NumIn() int
+
+ // NumOut returns a function type's output parameter count.
+ // It panics if the type's Kind is not Func.
+ NumOut() int
+
+ // Out returns the type of a function type's i'th output parameter.
+ // It panics if the type's Kind is not Func.
+ // It panics if i is not in the range [0, NumOut()).
+ Out(i int) Type
+
+ uncommon() *uncommonType
+}
+
+// A Kind represents the specific kind of type that a Type represents.
+// The zero Kind is not a valid kind.
+type Kind uint8
+
+const (
+ Invalid Kind = iota
+ Bool
+ Int
+ Int8
+ Int16
+ Int32
+ Int64
+ Uint
+ Uint8
+ Uint16
+ Uint32
+ Uint64
+ Uintptr
+ Float32
+ Float64
+ Complex64
+ Complex128
+ Array
+ Chan
+ Func
+ Interface
+ Map
+ Ptr
+ Slice
+ String
+ Struct
+ UnsafePointer
+)
+
/*
* Copy of data structures from ../runtime/type.go.
* For comments, see the ones in that file.
methods []method
}
-// BoolType represents a boolean type.
-type BoolType struct {
- commonType "bool"
-}
-
-// FloatType represents a float type.
-type FloatType struct {
- commonType "float"
-}
-
-// ComplexType represents a complex type.
-type ComplexType struct {
- commonType "complex"
-}
-
-// IntType represents a signed integer type.
-type IntType struct {
- commonType "int"
-}
-
-// UintType represents a uint type.
-type UintType struct {
- commonType "uint"
-}
-
-// StringType represents a string type.
-type StringType struct {
- commonType "string"
-}
-
-// UnsafePointerType represents an unsafe.Pointer type.
-type UnsafePointerType struct {
- commonType "unsafe.Pointer"
-}
-
-// ArrayType represents a fixed array type.
-type ArrayType struct {
- commonType "array"
- elem *runtime.Type
- len uintptr
-}
-
// ChanDir represents a channel type's direction.
type ChanDir int
BothDir = RecvDir | SendDir
)
-// ChanType represents a channel type.
-type ChanType struct {
+
+// arrayType represents a fixed array type.
+type arrayType struct {
+ commonType "array"
+ elem *runtime.Type
+ len uintptr
+}
+
+// chanType represents a channel type.
+type chanType struct {
commonType "chan"
elem *runtime.Type
dir uintptr
}
-// FuncType represents a function type.
-type FuncType struct {
+// funcType represents a function type.
+type funcType struct {
commonType "func"
dotdotdot bool
in []*runtime.Type
out []*runtime.Type
}
-// Method on interface type
+// imethod represents a method on an interface type
type imethod struct {
name *string
pkgPath *string
typ *runtime.Type
}
-// InterfaceType represents an interface type.
-type InterfaceType struct {
+// interfaceType represents an interface type.
+type interfaceType struct {
commonType "interface"
methods []imethod
}
-// MapType represents a map type.
-type MapType struct {
+// mapType represents a map type.
+type mapType struct {
commonType "map"
key *runtime.Type
elem *runtime.Type
}
-// PtrType represents a pointer type.
-type PtrType struct {
+// ptrType represents a pointer type.
+type ptrType struct {
commonType "ptr"
elem *runtime.Type
}
-// SliceType represents a slice type.
-type SliceType struct {
+// sliceType represents a slice type.
+type sliceType struct {
commonType "slice"
elem *runtime.Type
}
-// arrayOrSliceType is an unexported method that guarantees only
-// arrays and slices implement ArrayOrSliceType.
-func (*SliceType) arrayOrSliceType() {}
-
// Struct field
type structField struct {
name *string
offset uintptr
}
-// StructType represents a struct type.
-type StructType struct {
+// structType represents a struct type.
+type structType struct {
commonType "struct"
fields []structField
}
type Method struct {
PkgPath string // empty for uppercase Name
Name string
- Type *FuncType
- Func *FuncValue
+ Type Type
+ Func Value
}
-// Type is the runtime representation of a Go type.
-// Every type implements the methods listed here.
-// Some types implement additional interfaces;
-// use a type switch to find out what kind of type a Type is.
-// Each type in a program has a unique Type, so == on Types
-// corresponds to Go's type equality.
-type Type interface {
- // PkgPath returns the type's package path.
- // The package path is a full package import path like "container/vector".
- // PkgPath returns an empty string for unnamed types.
- PkgPath() string
-
- // Name returns the type's name within its package.
- // Name returns an empty string for unnamed types.
- Name() string
-
- // String returns a string representation of the type.
- // The string representation may use shortened package names
- // (e.g., vector instead of "container/vector") and is not
- // guaranteed to be unique among types. To test for equality,
- // compare the Types directly.
- String() string
-
- // Size returns the number of bytes needed to store
- // a value of the given type; it is analogous to unsafe.Sizeof.
- Size() uintptr
-
- // Bits returns the size of the type in bits.
- // It is intended for use with numeric types and may overflow
- // when used for composite types.
- Bits() int
-
- // Align returns the alignment of a value of this type
- // when allocated in memory.
- Align() int
-
- // FieldAlign returns the alignment of a value of this type
- // when used as a field in a struct.
- FieldAlign() int
-
- // Kind returns the specific kind of this type.
- Kind() Kind
-
- // Method returns the i'th method in the type's method set.
- //
- // For a non-interface type T or *T, the returned Method's Type and Func
- // fields describe a function whose first argument is the receiver.
- //
- // For an interface type, the returned Method's Type field gives the
- // method signature, without a receiver, and the Func field is nil.
- Method(int) Method
-
- // NumMethods returns the number of methods in the type's method set.
- NumMethod() int
-
- common() *commonType
- uncommon() *uncommonType
-}
-
-// A Kind represents the specific kind of type that a Type represents.
-// For numeric types, the Kind gives more information than the Type's
-// dynamic type. For example, the Type of a float32 is FloatType, but
-// the Kind is Float32.
-//
-// The zero Kind is not a valid kind.
-type Kind uint8
-
-const (
- Bool Kind = 1 + iota
- Int
- Int8
- Int16
- Int32
- Int64
- Uint
- Uint8
- Uint16
- Uint32
- Uint64
- Uintptr
- Float32
- Float64
- Complex64
- Complex128
- Array
- Chan
- Func
- Interface
- Map
- Ptr
- Slice
- String
- Struct
- UnsafePointer
-)
-
// High bit says whether type has
// embedded pointers,to help garbage collector.
const kindMask = 0x7f
}
var kindNames = []string{
+ Invalid: "invalid",
Bool: "bool",
Int: "int",
Int8: "int8",
return *t.name
}
+func (t *commonType) toType() Type {
+ if t == nil {
+ return nil
+ }
+ return t
+}
+
func (t *commonType) String() string { return *t.string }
func (t *commonType) Size() uintptr { return t.size }
-func (t *commonType) Bits() int { return int(t.size * 8) }
+func (t *commonType) Bits() int {
+ k := t.Kind()
+ if k < Int || k > Complex128 {
+ panic("reflect: Bits of non-arithmetic Type")
+ }
+ return int(t.size) * 8
+}
func (t *commonType) Align() int { return int(t.align) }
if p.pkgPath != nil {
m.PkgPath = *p.pkgPath
}
- m.Type = toType(*p.typ).(*FuncType)
+ m.Type = toType(p.typ)
fn := p.tfn
- m.Func = &FuncValue{value: value{m.Type, addr(&fn), canSet}}
+ m.Func = Value{&funcValue{value: value{m.Type, addr(&fn), canSet}}}
return
}
// TODO(rsc): 6g supplies these, but they are not
// as efficient as they could be: they have commonType
// as the receiver instead of *commonType.
-func (t *commonType) NumMethod() int { return t.uncommonType.NumMethod() }
+func (t *commonType) NumMethod() int {
+ if t.Kind() == Interface {
+ tt := (*interfaceType)(unsafe.Pointer(t))
+ return tt.NumMethod()
+ }
+ return t.uncommonType.NumMethod()
+}
-func (t *commonType) Method(i int) (m Method) { return t.uncommonType.Method(i) }
+func (t *commonType) Method(i int) (m Method) {
+ if t.Kind() == Interface {
+ tt := (*interfaceType)(unsafe.Pointer(t))
+ return tt.Method(i)
+ }
+ return t.uncommonType.Method(i)
+}
-func (t *commonType) PkgPath() string { return t.uncommonType.PkgPath() }
+func (t *commonType) PkgPath() string {
+ return t.uncommonType.PkgPath()
+}
-func (t *commonType) Name() string { return t.uncommonType.Name() }
+func (t *commonType) Name() string {
+ return t.uncommonType.Name()
+}
-// Len returns the number of elements in the array.
-func (t *ArrayType) Len() int { return int(t.len) }
+func (t *commonType) ChanDir() ChanDir {
+ if t.Kind() != Chan {
+ panic("reflect: ChanDir of non-chan type")
+ }
+ tt := (*chanType)(unsafe.Pointer(t))
+ return ChanDir(tt.dir)
+}
-// Elem returns the type of the array's elements.
-func (t *ArrayType) Elem() Type { return toType(*t.elem) }
+func (t *commonType) IsVariadic() bool {
+ if t.Kind() != Func {
+ panic("reflect: IsVariadic of non-func type")
+ }
+ tt := (*funcType)(unsafe.Pointer(t))
+ return tt.dotdotdot
+}
+
+func (t *commonType) Elem() Type {
+ switch t.Kind() {
+ case Array:
+ tt := (*arrayType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ case Chan:
+ tt := (*chanType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ case Map:
+ tt := (*mapType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ case Ptr:
+ tt := (*ptrType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ case Slice:
+ tt := (*sliceType)(unsafe.Pointer(t))
+ return toType(tt.elem)
+ }
+ panic("reflect; Elem of invalid type")
+}
-// arrayOrSliceType is an unexported method that guarantees only
-// arrays and slices implement ArrayOrSliceType.
-func (*ArrayType) arrayOrSliceType() {}
+func (t *commonType) Field(i int) StructField {
+ if t.Kind() != Struct {
+ panic("reflect: Field of non-struct type")
+ }
+ tt := (*structType)(unsafe.Pointer(t))
+ return tt.Field(i)
+}
-// Dir returns the channel direction.
-func (t *ChanType) Dir() ChanDir { return ChanDir(t.dir) }
+func (t *commonType) FieldByIndex(index []int) StructField {
+ if t.Kind() != Struct {
+ panic("reflect: FieldByIndex of non-struct type")
+ }
+ tt := (*structType)(unsafe.Pointer(t))
+ return tt.FieldByIndex(index)
+}
-// Elem returns the channel's element type.
-func (t *ChanType) Elem() Type { return toType(*t.elem) }
+func (t *commonType) FieldByName(name string) (StructField, bool) {
+ if t.Kind() != Struct {
+ panic("reflect: FieldByName of non-struct type")
+ }
+ tt := (*structType)(unsafe.Pointer(t))
+ return tt.FieldByName(name)
+}
-func (d ChanDir) String() string {
- switch d {
- case SendDir:
- return "chan<-"
- case RecvDir:
- return "<-chan"
- case BothDir:
- return "chan"
+func (t *commonType) FieldByNameFunc(match func(string) bool) (StructField, bool) {
+ if t.Kind() != Struct {
+ panic("reflect: FieldByNameFunc of non-struct type")
}
- return "ChanDir" + strconv.Itoa(int(d))
+ tt := (*structType)(unsafe.Pointer(t))
+ return tt.FieldByNameFunc(match)
}
-// In returns the type of the i'th function input parameter.
-func (t *FuncType) In(i int) Type {
- if i < 0 || i >= len(t.in) {
- return nil
+func (t *commonType) In(i int) Type {
+ if t.Kind() != Func {
+ panic("reflect: In of non-func type")
}
- return toType(*t.in[i])
+ tt := (*funcType)(unsafe.Pointer(t))
+ return toType(tt.in[i])
}
-// DotDotDot returns true if the final function input parameter
-// is a "..." parameter. If so, t.In(t.NumIn() - 1) returns the
-// parameter's underlying static type []T.
-//
-// For concreteness, if t is func(x int, y ... float), then
-//
-// t.NumIn() == 2
-// t.In(0) is the reflect.Type for "int"
-// t.In(1) is the reflect.Type for "[]float"
-// t.DotDotDot() == true
-//
-func (t *FuncType) DotDotDot() bool { return t.dotdotdot }
+func (t *commonType) Key() Type {
+ if t.Kind() != Map {
+ panic("reflect: Key of non-map type")
+ }
+ tt := (*mapType)(unsafe.Pointer(t))
+ return toType(tt.key)
+}
-// NumIn returns the number of input parameters.
-func (t *FuncType) NumIn() int { return len(t.in) }
+func (t *commonType) Len() int {
+ if t.Kind() != Array {
+ panic("reflect: Len of non-array type")
+ }
+ tt := (*arrayType)(unsafe.Pointer(t))
+ return int(tt.len)
+}
-// Out returns the type of the i'th function output parameter.
-func (t *FuncType) Out(i int) Type {
- if i < 0 || i >= len(t.out) {
- return nil
+func (t *commonType) NumField() int {
+ if t.Kind() != Struct {
+ panic("reflect: NumField of non-struct type")
}
- return toType(*t.out[i])
+ tt := (*structType)(unsafe.Pointer(t))
+ return len(tt.fields)
}
-// NumOut returns the number of function output parameters.
-func (t *FuncType) NumOut() int { return len(t.out) }
+func (t *commonType) NumIn() int {
+ if t.Kind() != Func {
+ panic("reflect; NumIn of non-func type")
+ }
+ tt := (*funcType)(unsafe.Pointer(t))
+ return len(tt.in)
+}
+
+func (t *commonType) NumOut() int {
+ if t.Kind() != Func {
+ panic("reflect; NumOut of non-func type")
+ }
+ tt := (*funcType)(unsafe.Pointer(t))
+ return len(tt.out)
+}
+
+func (t *commonType) Out(i int) Type {
+ if t.Kind() != Func {
+ panic("reflect: Out of non-func type")
+ }
+ tt := (*funcType)(unsafe.Pointer(t))
+ return toType(tt.out[i])
+}
+
+func (d ChanDir) String() string {
+ switch d {
+ case SendDir:
+ return "chan<-"
+ case RecvDir:
+ return "<-chan"
+ case BothDir:
+ return "chan"
+ }
+ return "ChanDir" + strconv.Itoa(int(d))
+}
// Method returns the i'th method in the type's method set.
-func (t *InterfaceType) Method(i int) (m Method) {
+func (t *interfaceType) Method(i int) (m Method) {
if i < 0 || i >= len(t.methods) {
return
}
if p.pkgPath != nil {
m.PkgPath = *p.pkgPath
}
- m.Type = toType(*p.typ).(*FuncType)
+ m.Type = toType(p.typ)
return
}
// NumMethod returns the number of interface methods in the type's method set.
-func (t *InterfaceType) NumMethod() int { return len(t.methods) }
-
-// Key returns the map key type.
-func (t *MapType) Key() Type { return toType(*t.key) }
-
-// Elem returns the map element type.
-func (t *MapType) Elem() Type { return toType(*t.elem) }
-
-// Elem returns the pointer element type.
-func (t *PtrType) Elem() Type { return toType(*t.elem) }
-
-// Elem returns the type of the slice's elements.
-func (t *SliceType) Elem() Type { return toType(*t.elem) }
+func (t *interfaceType) NumMethod() int { return len(t.methods) }
type StructField struct {
PkgPath string // empty for uppercase Name
}
// Field returns the i'th struct field.
-func (t *StructType) Field(i int) (f StructField) {
+func (t *structType) Field(i int) (f StructField) {
if i < 0 || i >= len(t.fields) {
return
}
p := t.fields[i]
- f.Type = toType(*p.typ)
+ f.Type = toType(p.typ)
if p.name != nil {
f.Name = *p.name
} else {
t := f.Type
- if pt, ok := t.(*PtrType); ok {
- t = pt.Elem()
+ if t.Kind() == Ptr {
+ t = t.Elem()
}
f.Name = t.Name()
f.Anonymous = true
// is wrong for FieldByIndex?
// FieldByIndex returns the nested field corresponding to index.
-func (t *StructType) FieldByIndex(index []int) (f StructField) {
+func (t *structType) FieldByIndex(index []int) (f StructField) {
+ f.Type = Type(t.toType())
for i, x := range index {
if i > 0 {
ft := f.Type
- if pt, ok := ft.(*PtrType); ok {
- ft = pt.Elem()
- }
- if st, ok := ft.(*StructType); ok {
- t = st
- } else {
- var f0 StructField
- f = f0
- return
+ if ft.Kind() == Ptr && ft.Elem().Kind() == Struct {
+ ft = ft.Elem()
}
+ f.Type = ft
}
- f = t.Field(x)
+ f = f.Type.Field(x)
}
return
}
const inf = 1 << 30 // infinity - no struct has that many nesting levels
-func (t *StructType) fieldByNameFunc(match func(string) bool, mark map[*StructType]bool, depth int) (ff StructField, fd int) {
+func (t *structType) fieldByNameFunc(match func(string) bool, mark map[*structType]bool, depth int) (ff StructField, fd int) {
fd = inf // field depth
if mark[t] {
d = depth
case f.Anonymous:
ft := f.Type
- if pt, ok := ft.(*PtrType); ok {
- ft = pt.Elem()
+ if ft.Kind() == Ptr {
+ ft = ft.Elem()
}
switch {
case match(ft.Name()):
d = depth
case fd > depth:
// No top-level field yet; look inside nested structs.
- if st, ok := ft.(*StructType); ok {
+ if ft.Kind() == Struct {
+ st := (*structType)(unsafe.Pointer(ft.(*commonType)))
f, d = st.fieldByNameFunc(match, mark, depth+1)
}
}
// FieldByName returns the struct field with the given name
// and a boolean to indicate if the field was found.
-func (t *StructType) FieldByName(name string) (f StructField, present bool) {
+func (t *structType) FieldByName(name string) (f StructField, present bool) {
return t.FieldByNameFunc(func(s string) bool { return s == name })
}
// FieldByNameFunc returns the struct field with a name that satisfies the
// match function and a boolean to indicate if the field was found.
-func (t *StructType) FieldByNameFunc(match func(string) bool) (f StructField, present bool) {
- if ff, fd := t.fieldByNameFunc(match, make(map[*StructType]bool), 0); fd < inf {
+func (t *structType) FieldByNameFunc(match func(string) bool) (f StructField, present bool) {
+ if ff, fd := t.fieldByNameFunc(match, make(map[*structType]bool), 0); fd < inf {
ff.Index = ff.Index[0 : fd+1]
f, present = ff, true
}
return
}
-// NumField returns the number of struct fields.
-func (t *StructType) NumField() int { return len(t.fields) }
-
// Convert runtime type to reflect type.
-// Same memory layouts, different method sets.
-func toType(i interface{}) Type {
- switch v := i.(type) {
- case nil:
- return nil
- case *runtime.BoolType:
- return (*BoolType)(unsafe.Pointer(v))
- case *runtime.FloatType:
- return (*FloatType)(unsafe.Pointer(v))
- case *runtime.ComplexType:
- return (*ComplexType)(unsafe.Pointer(v))
- case *runtime.IntType:
- return (*IntType)(unsafe.Pointer(v))
- case *runtime.StringType:
- return (*StringType)(unsafe.Pointer(v))
- case *runtime.UintType:
- return (*UintType)(unsafe.Pointer(v))
- case *runtime.UnsafePointerType:
- return (*UnsafePointerType)(unsafe.Pointer(v))
- case *runtime.ArrayType:
- return (*ArrayType)(unsafe.Pointer(v))
- case *runtime.ChanType:
- return (*ChanType)(unsafe.Pointer(v))
- case *runtime.FuncType:
- return (*FuncType)(unsafe.Pointer(v))
- case *runtime.InterfaceType:
- return (*InterfaceType)(unsafe.Pointer(v))
- case *runtime.MapType:
- return (*MapType)(unsafe.Pointer(v))
- case *runtime.PtrType:
- return (*PtrType)(unsafe.Pointer(v))
- case *runtime.SliceType:
- return (*SliceType)(unsafe.Pointer(v))
- case *runtime.StructType:
- return (*StructType)(unsafe.Pointer(v))
- }
- println(i)
- panic("toType")
-}
-
-// ArrayOrSliceType is the common interface implemented
-// by both ArrayType and SliceType.
-type ArrayOrSliceType interface {
- Type
- Elem() Type
- arrayOrSliceType() // Guarantees only Array and Slice implement this interface.
+func toType(p *runtime.Type) Type {
+ type hdr struct {
+ x interface{}
+ t commonType
+ }
+ t := &(*hdr)(unsafe.Pointer(p)).t
+ return t.toType()
}
// Typeof returns the reflection Type of the value in the interface{}.
-func Typeof(i interface{}) Type { return toType(unsafe.Typeof(i)) }
+func Typeof(i interface{}) Type {
+ type hdr struct {
+ typ *byte
+ val *commonType
+ }
+ rt := unsafe.Typeof(i)
+ t := (*(*hdr)(unsafe.Pointer(&rt))).val
+ return t.toType()
+}
// ptrMap is the cache for PtrTo.
var ptrMap struct {
sync.RWMutex
- m map[Type]*PtrType
-}
-
-// runtimePtrType is the runtime layout for a *PtrType.
-// The memory immediately before the *PtrType is always
-// the canonical runtime.Type to be used for a *runtime.Type
-// describing this PtrType.
-type runtimePtrType struct {
- runtime.Type
- runtime.PtrType
+ m map[*commonType]*ptrType
}
// PtrTo returns the pointer type with element t.
// For example, if t represents type Foo, PtrTo(t) represents *Foo.
-func PtrTo(t Type) *PtrType {
+func PtrTo(t Type) Type {
// If t records its pointer-to type, use it.
- ct := t.common()
+ ct := t.(*commonType)
if p := ct.ptrToThis; p != nil {
- return toType(*p).(*PtrType)
+ return toType(p)
}
// Otherwise, synthesize one.
// the type structures in read-only memory.
ptrMap.RLock()
if m := ptrMap.m; m != nil {
- if p := m[t]; p != nil {
+ if p := m[ct]; p != nil {
ptrMap.RUnlock()
- return p
+ return p.commonType.toType()
}
}
ptrMap.RUnlock()
ptrMap.Lock()
if ptrMap.m == nil {
- ptrMap.m = make(map[Type]*PtrType)
+ ptrMap.m = make(map[*commonType]*ptrType)
}
- p := ptrMap.m[t]
+ p := ptrMap.m[ct]
if p != nil {
// some other goroutine won the race and created it
ptrMap.Unlock()
return p
}
- // runtime.Type value is always right before type structure.
- // 2*ptrSize is size of interface header
- rt := (*runtime.Type)(unsafe.Pointer(uintptr(unsafe.Pointer(ct)) - uintptr(unsafe.Sizeof(runtime.Type(nil)))))
-
- rp := new(runtimePtrType)
- rp.Type = &rp.PtrType
+ var rt struct {
+ i runtime.Type
+ ptrType
+ }
+ rt.i = (*runtime.PtrType)(unsafe.Pointer(&rt.ptrType))
- // initialize rp.PtrType using *byte's PtrType as a prototype.
+ // initialize p using *byte's PtrType as a prototype.
// have to do assignment as PtrType, not runtime.PtrType,
// in order to write to unexported fields.
- p = (*PtrType)(unsafe.Pointer(&rp.PtrType))
- bp := (*PtrType)(unsafe.Pointer(unsafe.Typeof((*byte)(nil)).(*runtime.PtrType)))
+ p = &rt.ptrType
+ bp := (*ptrType)(unsafe.Pointer(unsafe.Typeof((*byte)(nil)).(*runtime.PtrType)))
*p = *bp
s := "*" + *ct.string
p.uncommonType = nil
p.ptrToThis = nil
- p.elem = rt
+ p.elem = (*runtime.Type)(unsafe.Pointer(uintptr(unsafe.Pointer(ct)) - uintptr(unsafe.Offsetof(rt.ptrType))))
- ptrMap.m[t] = (*PtrType)(unsafe.Pointer(&rp.PtrType))
+ ptrMap.m[ct] = p
ptrMap.Unlock()
- return p
+ return p.commonType.toType()
}
}
}
-// Value is the common interface to reflection values.
-// The implementations of Value (e.g., ArrayValue, StructValue)
+// Value is the reflection interface to a Go value.
+//
+// Not all methods apply to all kinds of values. Restrictions,
+// if any, are noted in the documentation for each method.
+// Use the Kind method to find out the kind of value before
+// calling kind-specific methods. Calling a method
+// inappropriate to the kind of type causes a run time panic.
+//
+// The zero Value represents no value.
+// Its IsValid method returns false, its Kind method returns Invalid,
+// its String method returns "<invalid Value>", and all other methods panic.
+// Most functions and methods never return an invalid value.
+// If one does, its documentation states the conditions explicitly.
+type Value struct {
+ Internal valueInterface
+}
+
+// TODO(rsc): This implementation of Value is a just a façade
+// in front of the old implementation, now called valueInterface.
+// A future CL will change it to a real implementation.
+// Changing the API is already a big enough step for one CL.
+
+// A ValueError occurs when a Value method is invoked on
+// a Value that does not support it. Such cases are documented
+// in the description of each method.
+type ValueError struct {
+ Method string
+ Kind Kind
+}
+
+func (e *ValueError) String() string {
+ if e.Kind == 0 {
+ return "reflect: call of " + e.Method + " on zero Value"
+ }
+ return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value"
+}
+
+// methodName returns the name of the calling method,
+// assumed to be two stack frames above.
+func methodName() string {
+ pc, _, _, _ := runtime.Caller(2)
+ f := runtime.FuncForPC(pc)
+ if f == nil {
+ return "unknown method"
+ }
+ return f.Name()
+}
+
+func (v Value) internal() valueInterface {
+ vi := v.Internal
+ if vi == nil {
+ panic(&ValueError{methodName(), 0})
+ }
+ return vi
+}
+
+func (v Value) panicIfNot(want Kind) valueInterface {
+ vi := v.Internal
+ if vi == nil {
+ panic(&ValueError{methodName(), 0})
+ }
+ if k := vi.Kind(); k != want {
+ panic(&ValueError{methodName(), k})
+ }
+ return vi
+}
+
+func (v Value) panicIfNots(wants []Kind) valueInterface {
+ vi := v.Internal
+ if vi == nil {
+ panic(&ValueError{methodName(), 0})
+ }
+ k := vi.Kind()
+ for _, want := range wants {
+ if k == want {
+ return vi
+ }
+ }
+ panic(&ValueError{methodName(), k})
+}
+
+// Addr returns a pointer value representing the address of v.
+// It panics if CanAddr() returns false.
+// Addr is typically used to obtain a pointer to a struct field
+// or slice element in order to call a method that requires a
+// pointer receiver.
+func (v Value) Addr() Value {
+ return v.internal().Addr()
+}
+
+// Bool returns v's underlying value.
+// It panics if v's kind is not Bool.
+func (v Value) Bool() bool {
+ u := v.panicIfNot(Bool).(*boolValue)
+ return u.Get()
+}
+
+// CanAddr returns true if the value's address can be obtained with Addr.
+// Such values are called addressable. A value is addressable if it is
+// an element of a slice, an element of an addressable array,
+// a field of an addressable struct, the result of dereferencing a pointer,
+// or the result of a call to NewValue, MakeChan, MakeMap, or Zero.
+// If CanAddr returns false, calling Addr will panic.
+func (v Value) CanAddr() bool {
+ return v.internal().CanAddr()
+}
+
+// CanSet returns true if the value of v can be changed.
+// Values obtained by the use of unexported struct fields
+// can be read but not set.
+// If CanSet returns false, calling Set or any type-specific
+// setter (e.g., SetBool, SetInt64) will panic.
+func (v Value) CanSet() bool {
+ return v.internal().CanSet()
+}
+
+// Call calls the function v with the input parameters in.
+// It panics if v's Kind is not Func.
+// It returns the output parameters as Values.
+func (v Value) Call(in []Value) []Value {
+ return v.panicIfNot(Func).(*funcValue).Call(in)
+}
+
+var capKinds = []Kind{Array, Chan, Slice}
+
+type capper interface {
+ Cap() int
+}
+
+// Cap returns v's capacity.
+// It panics if v's Kind is not Array, Chan, or Slice.
+func (v Value) Cap() int {
+ return v.panicIfNots(capKinds).(capper).Cap()
+}
+
+// Close closes the channel v.
+// It panics if v's Kind is not Chan.
+func (v Value) Close() {
+ v.panicIfNot(Chan).(*chanValue).Close()
+}
+
+var complexKinds = []Kind{Complex64, Complex128}
+
+// Complex returns v's underlying value, as a complex128.
+// It panics if v's Kind is not Complex64 or Complex128
+func (v Value) Complex() complex128 {
+ return v.panicIfNots(complexKinds).(*complexValue).Get()
+}
+
+var interfaceOrPtr = []Kind{Interface, Ptr}
+
+type elemer interface {
+ Elem() Value
+}
+
+// Elem returns the value that the interface v contains
+// or that the pointer v points to.
+// It panics if v's Kind is not Interface or Ptr.
+// It returns the zero Value if v is nil.
+func (v Value) Elem() Value {
+ return v.panicIfNots(interfaceOrPtr).(elemer).Elem()
+}
+
+// Field returns the i'th field of the struct v.
+// It panics if v's Kind is not Struct.
+func (v Value) Field(i int) Value {
+ return v.panicIfNot(Struct).(*structValue).Field(i)
+}
+
+// FieldByIndex returns the nested field corresponding to index.
+// It panics if v's Kind is not struct.
+func (v Value) FieldByIndex(index []int) Value {
+ return v.panicIfNot(Struct).(*structValue).FieldByIndex(index)
+}
+
+// FieldByName returns the struct field with the given name.
+// It returns the zero Value if no field was found.
+// It panics if v's Kind is not struct.
+func (v Value) FieldByName(name string) Value {
+ return v.panicIfNot(Struct).(*structValue).FieldByName(name)
+}
+
+// FieldByNameFunc returns the struct field with a name
+// that satisfies the match function.
+// It panics if v's Kind is not struct.
+// It returns the zero Value if no field was found.
+func (v Value) FieldByNameFunc(match func(string) bool) Value {
+ return v.panicIfNot(Struct).(*structValue).FieldByNameFunc(match)
+}
+
+var floatKinds = []Kind{Float32, Float64}
+
+// Float returns v's underlying value, as an float64.
+// It panics if v's Kind is not Float32 or Float64
+func (v Value) Float() float64 {
+ return v.panicIfNots(floatKinds).(*floatValue).Get()
+}
+
+var arrayOrSlice = []Kind{Array, Slice}
+
+// Index returns v's i'th element.
+// It panics if v's Kind is not Array or Slice.
+func (v Value) Index(i int) Value {
+ return v.panicIfNots(arrayOrSlice).(arrayOrSliceValue).Elem(i)
+}
+
+var intKinds = []Kind{Int, Int8, Int16, Int32, Int64}
+
+// Int returns v's underlying value, as an int64.
+// It panics if v's Kind is not a sized or unsized Int kind.
+func (v Value) Int() int64 {
+ return v.panicIfNots(intKinds).(*intValue).Get()
+}
+
+// Interface returns v's value as an interface{}.
+// If v is a method obtained by invoking Value.Method
+// (as opposed to Type.Method), Interface cannot return an
+// interface value, so it panics.
+func (v Value) Interface() interface{} {
+ return v.internal().Interface()
+}
+
+// InterfaceData returns the interface v's value as a uintptr pair.
+// It panics if v's Kind is not Interface.
+func (v Value) InterfaceData() [2]uintptr {
+ return v.panicIfNot(Interface).(*interfaceValue).Get()
+}
+
+var nilKinds = []Kind{Chan, Func, Interface, Map, Ptr, Slice}
+
+type isNiller interface {
+ IsNil() bool
+}
+
+// IsNil returns true if v is a nil value.
+// It panics if v's Kind is not Chan, Func, Interface, Map, Ptr, or Slice.
+func (v Value) IsNil() bool {
+ return v.panicIfNots(nilKinds).(isNiller).IsNil()
+}
+
+// IsValid returns true if v represents a value.
+// It returns false if v is the zero Value.
+// If IsValid returns false, all other methods except String panic.
+// Most functions and methods never return an invalid value.
+// If one does, its documentation states the conditions explicitly.
+func (v Value) IsValid() bool {
+ return v.Internal != nil
+}
+
+// Kind returns v's Kind.
+// If v is the zero Value (IsValid returns false), Kind returns Invalid.
+func (v Value) Kind() Kind {
+ if v.Internal == nil {
+ return Invalid
+ }
+ return v.internal().Kind()
+}
+
+var lenKinds = []Kind{Array, Chan, Map, Slice}
+
+type lenner interface {
+ Len() int
+}
+
+// Len returns v's length.
+// It panics if v's Kind is not Array, Chan, Map, or Slice.
+func (v Value) Len() int {
+ return v.panicIfNots(lenKinds).(lenner).Len()
+}
+
+// MapIndex returns the value associated with key in the map v.
+// It panics if v's Kind is not Map.
+// It returns the zero Value if key is not found in the map.
+func (v Value) MapIndex(key Value) Value {
+ return v.panicIfNot(Map).(*mapValue).Elem(key)
+}
+
+// MapKeys returns a slice containing all the keys present in the map,
+// in unspecified order.
+// It panics if v's Kind is not Map.
+func (v Value) MapKeys() []Value {
+ return v.panicIfNot(Map).(*mapValue).Keys()
+}
+
+// Method returns a function value corresponding to v's i'th method.
+// The arguments to a Call on the returned function should not include
+// a receiver; the returned function will always use v as the receiver.
+func (v Value) Method(i int) Value {
+ return v.internal().Method(i)
+}
+
+// NumField returns the number of fields in the struct v.
+// It panics if v's Kind is not Struct.
+func (v Value) NumField() int {
+ return v.panicIfNot(Struct).(*structValue).NumField()
+}
+
+// OverflowComplex returns true if the complex128 x cannot be represented by v's type.
+// It panics if v's Kind is not Complex64 or Complex128.
+func (v Value) OverflowComplex(x complex128) bool {
+ return v.panicIfNots(complexKinds).(*complexValue).Overflow(x)
+}
+
+// OverflowFloat returns true if the float64 x cannot be represented by v's type.
+// It panics if v's Kind is not Float32 or Float64.
+func (v Value) OverflowFloat(x float64) bool {
+ return v.panicIfNots(floatKinds).(*floatValue).Overflow(x)
+}
+
+// OverflowInt returns true if the int64 x cannot be represented by v's type.
+// It panics if v's Kind is not a sized or unsized Int kind.
+func (v Value) OverflowInt(x int64) bool {
+ return v.panicIfNots(intKinds).(*intValue).Overflow(x)
+}
+
+// OverflowUint returns true if the uint64 x cannot be represented by v's type.
+// It panics if v's Kind is not a sized or unsized Uint kind.
+func (v Value) OverflowUint(x uint64) bool {
+ return v.panicIfNots(uintKinds).(*uintValue).Overflow(x)
+}
+
+var pointerKinds = []Kind{Chan, Func, Map, Ptr, Slice, UnsafePointer}
+
+type uintptrGetter interface {
+ Get() uintptr
+}
+
+// Pointer returns v's value as a uintptr.
+// It returns uintptr instead of unsafe.Pointer so that
+// code using reflect cannot obtain unsafe.Pointers
+// without importing the unsafe package explicitly.
+// It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer.
+func (v Value) Pointer() uintptr {
+ return v.panicIfNots(pointerKinds).(uintptrGetter).Get()
+}
+
+
+// Recv receives and returns a value from the channel v.
+// It panics if v's Kind is not Chan.
+// The receive blocks until a value is ready.
+// The boolean value ok is true if the value x corresponds to a send
+// on the channel, false if it is a zero value received because the channel is closed.
+func (v Value) Recv() (x Value, ok bool) {
+ return v.panicIfNot(Chan).(*chanValue).Recv()
+}
+
+// Send sends x on the channel v.
+// It panics if v's kind is not Chan or if x's type is not the same type as v's element type.
+func (v Value) Send(x Value) {
+ v.panicIfNot(Chan).(*chanValue).Send(x)
+}
+
+// Set assigns x to the value v; x must have the same type as v.
+// It panics if CanSet() returns false or if x is the zero Value.
+func (v Value) Set(x Value) {
+ x.internal()
+ v.internal().SetValue(x)
+}
+
+// SetBool sets v's underlying value.
+// It panics if v's Kind is not Bool or if CanSet() is false.
+func (v Value) SetBool(x bool) {
+ v.panicIfNot(Bool).(*boolValue).Set(x)
+}
+
+// SetComplex sets v's underlying value to x.
+// It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false.
+func (v Value) SetComplex(x complex128) {
+ v.panicIfNots(complexKinds).(*complexValue).Set(x)
+}
+
+// SetFloat sets v's underlying value to x.
+// It panics if v's Kind is not Float32 or Float64, or if CanSet() is false.
+func (v Value) SetFloat(x float64) {
+ v.panicIfNots(floatKinds).(*floatValue).Set(x)
+}
+
+// SetInt sets v's underlying value to x.
+// It panics if v's Kind is not a sized or unsized Int kind, or if CanSet() is false.
+func (v Value) SetInt(x int64) {
+ v.panicIfNots(intKinds).(*intValue).Set(x)
+}
+
+// SetLen sets v's length to n.
+// It panics if v's Kind is not Slice.
+func (v Value) SetLen(n int) {
+ v.panicIfNot(Slice).(*sliceValue).SetLen(n)
+}
+
+// SetMapIndex sets the value associated with key in the map v to val.
+// It panics if v's Kind is not Map.
+// If val is the zero Value, SetMapIndex deletes the key from the map.
+func (v Value) SetMapIndex(key, val Value) {
+ v.panicIfNot(Map).(*mapValue).SetElem(key, val)
+}
+
+// SetUint sets v's underlying value to x.
+// It panics if v's Kind is not a sized or unsized Uint kind, or if CanSet() is false.
+func (v Value) SetUint(x uint64) {
+ v.panicIfNots(uintKinds).(*uintValue).Set(x)
+}
+
+// SetPointer sets the unsafe.Pointer value v to x.
+// It panics if v's Kind is not UnsafePointer.
+func (v Value) SetPointer(x unsafe.Pointer) {
+ v.panicIfNot(UnsafePointer).(*unsafePointerValue).Set(x)
+}
+
+// SetString sets v's underlying value to x.
+// It panics if v's Kind is not String or if CanSet() is false.
+func (v Value) SetString(x string) {
+ v.panicIfNot(String).(*stringValue).Set(x)
+}
+
+// BUG(rsc): Value.Slice should allow slicing arrays.
+
+// Slice returns a slice of v.
+// It panics if v's Kind is not Slice.
+func (v Value) Slice(beg, end int) Value {
+ return v.panicIfNot(Slice).(*sliceValue).Slice(beg, end)
+}
+
+// String returns the string v's underlying value, as a string.
+// String is a special case because of Go's String method convention.
+// Unlike the other getters, it does not panic if v's Kind is not String.
+// Instead, it returns a string of the form "<T value>" where T is v's type.
+func (v Value) String() string {
+ vi := v.Internal
+ if vi == nil {
+ return "<invalid Value>"
+ }
+ if vi.Kind() == String {
+ return vi.(*stringValue).Get()
+ }
+ return "<" + vi.Type().String() + " Value>"
+}
+
+// TryRecv attempts to receive a value from the channel v but will not block.
+// It panics if v's Kind is not Chan.
+// If the receive cannot finish without blocking, x is the zero Value.
+// The boolean ok is true if the value x corresponds to a send
+// on the channel, false if it is a zero value received because the channel is closed.
+func (v Value) TryRecv() (x Value, ok bool) {
+ return v.panicIfNot(Chan).(*chanValue).TryRecv()
+}
+
+// TrySend attempts to send x on the channel v but will not block.
+// It panics if v's Kind is not Chan.
+// It returns true if the value was sent, false otherwise.
+func (v Value) TrySend(x Value) bool {
+ return v.panicIfNot(Chan).(*chanValue).TrySend(x)
+}
+
+// Type returns v's type.
+func (v Value) Type() Type {
+ return v.internal().Type()
+}
+
+var uintKinds = []Kind{Uint, Uint8, Uint16, Uint32, Uint64, Uintptr}
+
+// Uint returns v's underlying value, as a uint64.
+// It panics if v's Kind is not a sized or unsized Uint kind.
+func (v Value) Uint() uint64 {
+ return v.panicIfNots(uintKinds).(*uintValue).Get()
+}
+
+// UnsafeAddr returns a pointer to v's data.
+// It is for advanced clients that also import the "unsafe" package.
+func (v Value) UnsafeAddr() uintptr {
+ return v.internal().UnsafeAddr()
+}
+
+// valueInterface is the common interface to reflection values.
+// The implementations of Value (e.g., arrayValue, structValue)
// have additional type-specific methods.
-type Value interface {
+type valueInterface interface {
// Type returns the value's type.
Type() Type
// Such values are called addressable. A value is addressable if it is
// an element of a slice, an element of an addressable array,
// a field of an addressable struct, the result of dereferencing a pointer,
- // or the result of a call to NewValue, MakeChan, MakeMap, or MakeZero.
+ // or the result of a call to NewValue, MakeChan, MakeMap, or Zero.
// If CanAddr returns false, calling Addr will panic.
CanAddr() bool
// If the value is not addressable, Addr panics.
// Addr is typically used to obtain a pointer to a struct field or slice element
// in order to call a method that requires a pointer receiver.
- Addr() *PtrValue
+ Addr() Value
// UnsafeAddr returns a pointer to the underlying data.
// It is for advanced clients that also import the "unsafe" package.
UnsafeAddr() uintptr
- // Method returns a FuncValue corresponding to the value's i'th method.
- // The arguments to a Call on the returned FuncValue
- // should not include a receiver; the FuncValue will use
+ // Method returns a funcValue corresponding to the value's i'th method.
+ // The arguments to a Call on the returned funcValue
+ // should not include a receiver; the funcValue will use
// the value as the receiver.
- Method(i int) *FuncValue
+ Method(i int) Value
+
+ Kind() Kind
getAddr() addr
}
// value is the common implementation of most values.
// It is embedded in other, public struct types, but always
// with a unique tag like "uint" or "float" so that the client cannot
-// convert from, say, *UintValue to *FloatValue.
+// convert from, say, *uintValue to *floatValue.
type value struct {
typ Type
addr addr
func (v *value) Type() Type { return v.typ }
-func (v *value) Addr() *PtrValue {
+func (v *value) Kind() Kind { return v.typ.Kind() }
+
+func (v *value) Addr() Value {
if !v.CanAddr() {
panic("reflect: cannot take address of value")
}
// the caller would get the address of a -
// but it doesn't match the Go model.
// The language doesn't let you say &&v.
- return newValue(PtrTo(v.typ), addr(&a), flag).(*PtrValue)
+ return newValue(PtrTo(v.typ), addr(&a), flag)
}
func (v *value) UnsafeAddr() uintptr { return uintptr(v.addr) }
func (v *value) getAddr() addr { return v.addr }
func (v *value) Interface() interface{} {
- if typ, ok := v.typ.(*InterfaceType); ok {
+ typ := v.typ
+ if typ.Kind() == Interface {
// There are two different representations of interface values,
// one if the interface type has methods and one if it doesn't.
// These two representations require different expressions
* basic types
*/
-// BoolValue represents a bool value.
-type BoolValue struct {
+// boolValue represents a bool value.
+type boolValue struct {
value "bool"
}
// Get returns the underlying bool value.
-func (v *BoolValue) Get() bool { return *(*bool)(v.addr) }
+func (v *boolValue) Get() bool { return *(*bool)(v.addr) }
// Set sets v to the value x.
-func (v *BoolValue) Set(x bool) {
+func (v *boolValue) Set(x bool) {
if !v.CanSet() {
panic(cannotSet)
}
}
// Set sets v to the value x.
-func (v *BoolValue) SetValue(x Value) { v.Set(x.(*BoolValue).Get()) }
+func (v *boolValue) SetValue(x Value) { v.Set(x.Bool()) }
-// FloatValue represents a float value.
-type FloatValue struct {
+// floatValue represents a float value.
+type floatValue struct {
value "float"
}
// Get returns the underlying int value.
-func (v *FloatValue) Get() float64 {
+func (v *floatValue) Get() float64 {
switch v.typ.Kind() {
case Float32:
return float64(*(*float32)(v.addr))
}
// Set sets v to the value x.
-func (v *FloatValue) Set(x float64) {
+func (v *floatValue) Set(x float64) {
if !v.CanSet() {
panic(cannotSet)
}
}
// Overflow returns true if x cannot be represented by the type of v.
-func (v *FloatValue) Overflow(x float64) bool {
+func (v *floatValue) Overflow(x float64) bool {
if v.typ.Size() == 8 {
return false
}
}
// Set sets v to the value x.
-func (v *FloatValue) SetValue(x Value) { v.Set(x.(*FloatValue).Get()) }
+func (v *floatValue) SetValue(x Value) { v.Set(x.Float()) }
-// ComplexValue represents a complex value.
-type ComplexValue struct {
+// complexValue represents a complex value.
+type complexValue struct {
value "complex"
}
// Get returns the underlying complex value.
-func (v *ComplexValue) Get() complex128 {
+func (v *complexValue) Get() complex128 {
switch v.typ.Kind() {
case Complex64:
return complex128(*(*complex64)(v.addr))
}
// Set sets v to the value x.
-func (v *ComplexValue) Set(x complex128) {
+func (v *complexValue) Set(x complex128) {
if !v.CanSet() {
panic(cannotSet)
}
}
}
+// How did we forget this one?
+func (v *complexValue) Overflow(x complex128) bool {
+ if v.typ.Size() == 16 {
+ return false
+ }
+ r := real(x)
+ i := imag(x)
+ if r < 0 {
+ r = -r
+ }
+ if i < 0 {
+ i = -i
+ }
+ return math.MaxFloat32 <= r && r <= math.MaxFloat64 ||
+ math.MaxFloat32 <= i && i <= math.MaxFloat64
+}
+
// Set sets v to the value x.
-func (v *ComplexValue) SetValue(x Value) { v.Set(x.(*ComplexValue).Get()) }
+func (v *complexValue) SetValue(x Value) { v.Set(x.Complex()) }
-// IntValue represents an int value.
-type IntValue struct {
+// intValue represents an int value.
+type intValue struct {
value "int"
}
// Get returns the underlying int value.
-func (v *IntValue) Get() int64 {
+func (v *intValue) Get() int64 {
switch v.typ.Kind() {
case Int:
return int64(*(*int)(v.addr))
}
// Set sets v to the value x.
-func (v *IntValue) Set(x int64) {
+func (v *intValue) Set(x int64) {
if !v.CanSet() {
panic(cannotSet)
}
}
// Set sets v to the value x.
-func (v *IntValue) SetValue(x Value) { v.Set(x.(*IntValue).Get()) }
+func (v *intValue) SetValue(x Value) { v.Set(x.Int()) }
// Overflow returns true if x cannot be represented by the type of v.
-func (v *IntValue) Overflow(x int64) bool {
+func (v *intValue) Overflow(x int64) bool {
bitSize := uint(v.typ.Bits())
trunc := (x << (64 - bitSize)) >> (64 - bitSize)
return x != trunc
Len int
}
-// StringValue represents a string value.
-type StringValue struct {
+// stringValue represents a string value.
+type stringValue struct {
value "string"
}
// Get returns the underlying string value.
-func (v *StringValue) Get() string { return *(*string)(v.addr) }
+func (v *stringValue) Get() string { return *(*string)(v.addr) }
// Set sets v to the value x.
-func (v *StringValue) Set(x string) {
+func (v *stringValue) Set(x string) {
if !v.CanSet() {
panic(cannotSet)
}
}
// Set sets v to the value x.
-func (v *StringValue) SetValue(x Value) { v.Set(x.(*StringValue).Get()) }
+func (v *stringValue) SetValue(x Value) {
+ // Do the kind check explicitly, because x.String() does not.
+ v.Set(x.panicIfNot(String).(*stringValue).Get())
+}
-// UintValue represents a uint value.
-type UintValue struct {
+// uintValue represents a uint value.
+type uintValue struct {
value "uint"
}
// Get returns the underlying uuint value.
-func (v *UintValue) Get() uint64 {
+func (v *uintValue) Get() uint64 {
switch v.typ.Kind() {
case Uint:
return uint64(*(*uint)(v.addr))
}
// Set sets v to the value x.
-func (v *UintValue) Set(x uint64) {
+func (v *uintValue) Set(x uint64) {
if !v.CanSet() {
panic(cannotSet)
}
}
// Overflow returns true if x cannot be represented by the type of v.
-func (v *UintValue) Overflow(x uint64) bool {
+func (v *uintValue) Overflow(x uint64) bool {
bitSize := uint(v.typ.Bits())
trunc := (x << (64 - bitSize)) >> (64 - bitSize)
return x != trunc
}
// Set sets v to the value x.
-func (v *UintValue) SetValue(x Value) { v.Set(x.(*UintValue).Get()) }
+func (v *uintValue) SetValue(x Value) { v.Set(x.Uint()) }
-// UnsafePointerValue represents an unsafe.Pointer value.
-type UnsafePointerValue struct {
+// unsafePointerValue represents an unsafe.Pointer value.
+type unsafePointerValue struct {
value "unsafe.Pointer"
}
// Get returns uintptr, not unsafe.Pointer, so that
// programs that do not import "unsafe" cannot
// obtain a value of unsafe.Pointer type from "reflect".
-func (v *UnsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) }
+func (v *unsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) }
// Set sets v to the value x.
-func (v *UnsafePointerValue) Set(x unsafe.Pointer) {
+func (v *unsafePointerValue) Set(x unsafe.Pointer) {
if !v.CanSet() {
panic(cannotSet)
}
}
// Set sets v to the value x.
-func (v *UnsafePointerValue) SetValue(x Value) {
- v.Set(unsafe.Pointer(x.(*UnsafePointerValue).Get()))
+func (v *unsafePointerValue) SetValue(x Value) {
+ // Do the kind check explicitly, because x.UnsafePointer
+ // applies to more than just the UnsafePointer Kind.
+ v.Set(unsafe.Pointer(x.panicIfNot(UnsafePointer).(*unsafePointerValue).Get()))
}
func typesMustMatch(t1, t2 Type) {
*/
// ArrayOrSliceValue is the common interface
-// implemented by both ArrayValue and SliceValue.
-type ArrayOrSliceValue interface {
- Value
+// implemented by both arrayValue and sliceValue.
+type arrayOrSliceValue interface {
+ valueInterface
Len() int
Cap() int
Elem(i int) Value
// grow grows the slice s so that it can hold extra more values, allocating
// more capacity if needed. It also returns the old and new slice lengths.
-func grow(s *SliceValue, extra int) (*SliceValue, int, int) {
+func grow(s Value, extra int) (Value, int, int) {
i0 := s.Len()
i1 := i0 + extra
if i1 < i0 {
}
}
}
- t := MakeSlice(s.Type().(*SliceType), i1, m)
+ t := MakeSlice(s.Type(), i1, m)
Copy(t, s)
return t, i0, i1
}
// Append appends the values x to a slice s and returns the resulting slice.
// Each x must have the same type as s' element type.
-func Append(s *SliceValue, x ...Value) *SliceValue {
+func Append(s Value, x ...Value) Value {
s, i0, i1 := grow(s, len(x))
+ sa := s.panicIfNot(Slice).(*sliceValue)
for i, j := i0, 0; i < i1; i, j = i+1, j+1 {
- s.Elem(i).SetValue(x[j])
+ sa.Elem(i).Set(x[j])
}
return s
}
// AppendSlice appends a slice t to a slice s and returns the resulting slice.
// The slices s and t must have the same element type.
-func AppendSlice(s, t *SliceValue) *SliceValue {
+func AppendSlice(s, t Value) Value {
s, i0, i1 := grow(s, t.Len())
Copy(s.Slice(i0, i1), t)
return s
// Copy copies the contents of src into dst until either
// dst has been filled or src has been exhausted.
// It returns the number of elements copied.
-// The arrays dst and src must have the same element type.
-func Copy(dst, src ArrayOrSliceValue) int {
+// Dst and src each must be a slice or array, and they
+// must have the same element type.
+func Copy(dst, src Value) int {
// TODO: This will have to move into the runtime
// once the real gc goes in.
- de := dst.Type().(ArrayOrSliceType).Elem()
- se := src.Type().(ArrayOrSliceType).Elem()
+ de := dst.Type().Elem()
+ se := src.Type().Elem()
typesMustMatch(de, se)
n := dst.Len()
if xn := src.Len(); n > xn {
n = xn
}
- memmove(dst.addr(), src.addr(), uintptr(n)*de.Size())
+ memmove(dst.panicIfNots(arrayOrSlice).(arrayOrSliceValue).addr(),
+ src.panicIfNots(arrayOrSlice).(arrayOrSliceValue).addr(),
+ uintptr(n)*de.Size())
return n
}
-// An ArrayValue represents an array.
-type ArrayValue struct {
+// An arrayValue represents an array.
+type arrayValue struct {
value "array"
}
// Len returns the length of the array.
-func (v *ArrayValue) Len() int { return v.typ.(*ArrayType).Len() }
+func (v *arrayValue) Len() int { return v.typ.Len() }
// Cap returns the capacity of the array (equal to Len()).
-func (v *ArrayValue) Cap() int { return v.typ.(*ArrayType).Len() }
+func (v *arrayValue) Cap() int { return v.typ.Len() }
// addr returns the base address of the data in the array.
-func (v *ArrayValue) addr() addr { return v.value.addr }
+func (v *arrayValue) addr() addr { return v.value.addr }
// Set assigns x to v.
// The new value x must have the same type as v.
-func (v *ArrayValue) Set(x *ArrayValue) {
+func (v *arrayValue) Set(x *arrayValue) {
if !v.CanSet() {
panic(cannotSet)
}
typesMustMatch(v.typ, x.typ)
- Copy(v, x)
+ Copy(Value{v}, Value{x})
}
// Set sets v to the value x.
-func (v *ArrayValue) SetValue(x Value) { v.Set(x.(*ArrayValue)) }
+func (v *arrayValue) SetValue(x Value) {
+ v.Set(x.panicIfNot(Array).(*arrayValue))
+}
// Elem returns the i'th element of v.
-func (v *ArrayValue) Elem(i int) Value {
- typ := v.typ.(*ArrayType).Elem()
+func (v *arrayValue) Elem(i int) Value {
+ typ := v.typ.Elem()
n := v.Len()
if i < 0 || i >= n {
panic("array index out of bounds")
Cap int
}
-// A SliceValue represents a slice.
-type SliceValue struct {
+// A sliceValue represents a slice.
+type sliceValue struct {
value "slice"
}
-func (v *SliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) }
+func (v *sliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) }
// IsNil returns whether v is a nil slice.
-func (v *SliceValue) IsNil() bool { return v.slice().Data == 0 }
+func (v *sliceValue) IsNil() bool { return v.slice().Data == 0 }
// Len returns the length of the slice.
-func (v *SliceValue) Len() int { return int(v.slice().Len) }
+func (v *sliceValue) Len() int { return int(v.slice().Len) }
// Cap returns the capacity of the slice.
-func (v *SliceValue) Cap() int { return int(v.slice().Cap) }
+func (v *sliceValue) Cap() int { return int(v.slice().Cap) }
// addr returns the base address of the data in the slice.
-func (v *SliceValue) addr() addr { return addr(v.slice().Data) }
+func (v *sliceValue) addr() addr { return addr(v.slice().Data) }
// SetLen changes the length of v.
// The new length n must be between 0 and the capacity, inclusive.
-func (v *SliceValue) SetLen(n int) {
+func (v *sliceValue) SetLen(n int) {
s := v.slice()
if n < 0 || n > int(s.Cap) {
panic("reflect: slice length out of range in SetLen")
// Set assigns x to v.
// The new value x must have the same type as v.
-func (v *SliceValue) Set(x *SliceValue) {
+func (v *sliceValue) Set(x *sliceValue) {
if !v.CanSet() {
panic(cannotSet)
}
}
// Set sets v to the value x.
-func (v *SliceValue) SetValue(x Value) { v.Set(x.(*SliceValue)) }
+func (v *sliceValue) SetValue(x Value) {
+ v.Set(x.panicIfNot(Slice).(*sliceValue))
+}
// Get returns the uintptr address of the v.Cap()'th element. This gives
// the same result for all slices of the same array.
// It is mainly useful for printing.
-func (v *SliceValue) Get() uintptr {
- typ := v.typ.(*SliceType)
+func (v *sliceValue) Get() uintptr {
+ typ := v.typ
return uintptr(v.addr()) + uintptr(v.Cap())*typ.Elem().Size()
}
// Slice returns a sub-slice of the slice v.
-func (v *SliceValue) Slice(beg, end int) *SliceValue {
+func (v *sliceValue) Slice(beg, end int) Value {
cap := v.Cap()
if beg < 0 || end < beg || end > cap {
panic("slice index out of bounds")
}
- typ := v.typ.(*SliceType)
+ typ := v.typ
s := new(SliceHeader)
s.Data = uintptr(v.addr()) + uintptr(beg)*typ.Elem().Size()
s.Len = end - beg
if v.flag&canStore != 0 {
flag |= canStore
}
- return newValue(typ, addr(s), flag).(*SliceValue)
+ return newValue(typ, addr(s), flag)
}
// Elem returns the i'th element of v.
-func (v *SliceValue) Elem(i int) Value {
- typ := v.typ.(*SliceType).Elem()
+func (v *sliceValue) Elem(i int) Value {
+ typ := v.typ.Elem()
n := v.Len()
if i < 0 || i >= n {
panic("reflect: slice index out of range")
// MakeSlice creates a new zero-initialized slice value
// for the specified slice type, length, and capacity.
-func MakeSlice(typ *SliceType, len, cap int) *SliceValue {
+func MakeSlice(typ Type, len, cap int) Value {
+ if typ.Kind() != Slice {
+ panic("reflect: MakeSlice of non-slice type")
+ }
s := &SliceHeader{
Data: uintptr(unsafe.NewArray(typ.Elem(), cap)),
Len: len,
Cap: cap,
}
- return newValue(typ, addr(s), canAddr|canSet|canStore).(*SliceValue)
+ return newValue(typ, addr(s), canAddr|canSet|canStore)
}
/*
* chan
*/
-// A ChanValue represents a chan.
-type ChanValue struct {
+// A chanValue represents a chan.
+type chanValue struct {
value "chan"
}
// IsNil returns whether v is a nil channel.
-func (v *ChanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
+func (v *chanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Set assigns x to v.
// The new value x must have the same type as v.
-func (v *ChanValue) Set(x *ChanValue) {
+func (v *chanValue) Set(x *chanValue) {
if !v.CanSet() {
panic(cannotSet)
}
}
// Set sets v to the value x.
-func (v *ChanValue) SetValue(x Value) { v.Set(x.(*ChanValue)) }
+func (v *chanValue) SetValue(x Value) {
+ v.Set(x.panicIfNot(Chan).(*chanValue))
+}
// Get returns the uintptr value of v.
// It is mainly useful for printing.
-func (v *ChanValue) Get() uintptr { return *(*uintptr)(v.addr) }
+func (v *chanValue) Get() uintptr { return *(*uintptr)(v.addr) }
// implemented in ../pkg/runtime/reflect.cgo
func makechan(typ *runtime.ChanType, size uint32) (ch *byte)
func chancap(ch *byte) int32
// Close closes the channel.
-func (v *ChanValue) Close() {
+func (v *chanValue) Close() {
ch := *(**byte)(v.addr)
chanclose(ch)
}
-func (v *ChanValue) Len() int {
+func (v *chanValue) Len() int {
ch := *(**byte)(v.addr)
return int(chanlen(ch))
}
-func (v *ChanValue) Cap() int {
+func (v *chanValue) Cap() int {
ch := *(**byte)(v.addr)
return int(chancap(ch))
}
// internal send; non-blocking if selected != nil
-func (v *ChanValue) send(x Value, selected *bool) {
- t := v.Type().(*ChanType)
- if t.Dir()&SendDir == 0 {
+func (v *chanValue) send(x Value, selected *bool) {
+ t := v.Type()
+ if t.ChanDir()&SendDir == 0 {
panic("send on recv-only channel")
}
typesMustMatch(t.Elem(), x.Type())
ch := *(**byte)(v.addr)
- chansend(ch, (*byte)(x.getAddr()), selected)
+ chansend(ch, (*byte)(x.internal().getAddr()), selected)
}
// internal recv; non-blocking if selected != nil
-func (v *ChanValue) recv(selected *bool) (Value, bool) {
- t := v.Type().(*ChanType)
- if t.Dir()&RecvDir == 0 {
+func (v *chanValue) recv(selected *bool) (Value, bool) {
+ t := v.Type()
+ if t.ChanDir()&RecvDir == 0 {
panic("recv on send-only channel")
}
ch := *(**byte)(v.addr)
- x := MakeZero(t.Elem())
+ x := Zero(t.Elem())
var ok bool
- chanrecv(ch, (*byte)(x.getAddr()), selected, &ok)
+ chanrecv(ch, (*byte)(x.internal().getAddr()), selected, &ok)
return x, ok
}
// Send sends x on the channel v.
-func (v *ChanValue) Send(x Value) { v.send(x, nil) }
+func (v *chanValue) Send(x Value) { v.send(x, nil) }
// Recv receives and returns a value from the channel v.
// The receive blocks until a value is ready.
// The boolean value ok is true if the value x corresponds to a send
// on the channel, false if it is a zero value received because the channel is closed.
-func (v *ChanValue) Recv() (x Value, ok bool) {
+func (v *chanValue) Recv() (x Value, ok bool) {
return v.recv(nil)
}
// TrySend attempts to sends x on the channel v but will not block.
// It returns true if the value was sent, false otherwise.
-func (v *ChanValue) TrySend(x Value) bool {
+func (v *chanValue) TrySend(x Value) bool {
var selected bool
v.send(x, &selected)
return selected
// If the receive can finish without blocking, TryRecv returns x != nil.
// The boolean value ok is true if the value x corresponds to a send
// on the channel, false if it is a zero value received because the channel is closed.
-func (v *ChanValue) TryRecv() (x Value, ok bool) {
+func (v *chanValue) TryRecv() (x Value, ok bool) {
var selected bool
x, ok = v.recv(&selected)
if !selected {
- return nil, false
+ return Value{}, false
}
return x, ok
}
// MakeChan creates a new channel with the specified type and buffer size.
-func MakeChan(typ *ChanType, buffer int) *ChanValue {
+func MakeChan(typ Type, buffer int) Value {
+ if typ.Kind() != Chan {
+ panic("reflect: MakeChan of non-chan type")
+ }
if buffer < 0 {
panic("MakeChan: negative buffer size")
}
- if typ.Dir() != BothDir {
+ if typ.ChanDir() != BothDir {
panic("MakeChan: unidirectional channel type")
}
- v := MakeZero(typ).(*ChanValue)
- *(**byte)(v.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ)), uint32(buffer))
+ v := Zero(typ)
+ ch := v.panicIfNot(Chan).(*chanValue)
+ *(**byte)(ch.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ.(*commonType))), uint32(buffer))
return v
}
* func
*/
-// A FuncValue represents a function value.
-type FuncValue struct {
+// A funcValue represents a function value.
+type funcValue struct {
value "func"
first *value
isInterface bool
}
// IsNil returns whether v is a nil function.
-func (v *FuncValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
+func (v *funcValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Get returns the uintptr value of v.
// It is mainly useful for printing.
-func (v *FuncValue) Get() uintptr { return *(*uintptr)(v.addr) }
+func (v *funcValue) Get() uintptr { return *(*uintptr)(v.addr) }
// Set assigns x to v.
// The new value x must have the same type as v.
-func (v *FuncValue) Set(x *FuncValue) {
+func (v *funcValue) Set(x *funcValue) {
if !v.CanSet() {
panic(cannotSet)
}
}
// Set sets v to the value x.
-func (v *FuncValue) SetValue(x Value) { v.Set(x.(*FuncValue)) }
+func (v *funcValue) SetValue(x Value) {
+ v.Set(x.panicIfNot(Func).(*funcValue))
+}
-// Method returns a FuncValue corresponding to v's i'th method.
-// The arguments to a Call on the returned FuncValue
-// should not include a receiver; the FuncValue will use v
+// Method returns a funcValue corresponding to v's i'th method.
+// The arguments to a Call on the returned funcValue
+// should not include a receiver; the funcValue will use v
// as the receiver.
-func (v *value) Method(i int) *FuncValue {
+func (v *value) Method(i int) Value {
t := v.Type().uncommon()
if t == nil || i < 0 || i >= len(t.methods) {
- return nil
+ panic("reflect: Method index out of range")
}
p := &t.methods[i]
fn := p.tfn
- fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), 0}, first: v, isInterface: false}
- return fv
+ fv := &funcValue{value: value{toType(p.typ), addr(&fn), 0}, first: v, isInterface: false}
+ return Value{fv}
}
// implemented in ../pkg/runtime/*/asm.s
// If fv is a method obtained by invoking Value.Method
// (as opposed to Type.Method), Interface cannot return an
// interface value, so it panics.
-func (fv *FuncValue) Interface() interface{} {
+func (fv *funcValue) Interface() interface{} {
if fv.first != nil {
- panic("FuncValue: cannot create interface value for method with bound receiver")
+ panic("funcValue: cannot create interface value for method with bound receiver")
}
return fv.value.Interface()
}
// Call calls the function fv with input parameters in.
// It returns the function's output parameters as Values.
-func (fv *FuncValue) Call(in []Value) []Value {
- t := fv.Type().(*FuncType)
+func (fv *funcValue) Call(in []Value) []Value {
+ t := fv.Type()
nin := len(in)
if fv.first != nil && !fv.isInterface {
nin++
}
if nin != t.NumIn() {
- panic("FuncValue: wrong argument count")
+ panic("funcValue: wrong argument count")
}
nout := t.NumOut()
a := uintptr(tv.Align())
off = (off + a - 1) &^ (a - 1)
n := tv.Size()
- memmove(addr(ptr+off), v.getAddr(), n)
+ memmove(addr(ptr+off), v.internal().getAddr(), n)
off += n
}
off = (off + ptrSize - 1) &^ (ptrSize - 1)
tv := t.Out(i)
a := uintptr(tv.Align())
off = (off + a - 1) &^ (a - 1)
- v := MakeZero(tv)
+ v := Zero(tv)
n := tv.Size()
- memmove(v.getAddr(), addr(ptr+off), n)
+ memmove(v.internal().getAddr(), addr(ptr+off), n)
ret[i] = v
off += n
}
* interface
*/
-// An InterfaceValue represents an interface value.
-type InterfaceValue struct {
+// An interfaceValue represents an interface value.
+type interfaceValue struct {
value "interface"
}
// IsNil returns whether v is a nil interface value.
-func (v *InterfaceValue) IsNil() bool { return v.Interface() == nil }
+func (v *interfaceValue) IsNil() bool { return v.Interface() == nil }
// No single uinptr Get because v.Interface() is available.
// Get returns the two words that represent an interface in the runtime.
// Those words are useful only when playing unsafe games.
-func (v *InterfaceValue) Get() [2]uintptr {
+func (v *interfaceValue) Get() [2]uintptr {
return *(*[2]uintptr)(v.addr)
}
// Elem returns the concrete value stored in the interface value v.
-func (v *InterfaceValue) Elem() Value { return NewValue(v.Interface()) }
+func (v *interfaceValue) Elem() Value { return NewValue(v.Interface()) }
// ../runtime/reflect.cgo
-func setiface(typ *InterfaceType, x *interface{}, addr addr)
+func setiface(typ *interfaceType, x *interface{}, addr addr)
// Set assigns x to v.
-func (v *InterfaceValue) Set(x Value) {
- var i interface{}
- if x != nil {
- i = x.Interface()
- }
+func (v *interfaceValue) Set(x Value) {
+ i := x.Interface()
if !v.CanSet() {
panic(cannotSet)
}
// Two different representations; see comment in Get.
// Empty interface is easy.
- t := v.typ.(*InterfaceType)
+ t := (*interfaceType)(unsafe.Pointer(v.typ.(*commonType)))
if t.NumMethod() == 0 {
*(*interface{})(v.addr) = i
return
}
// Set sets v to the value x.
-func (v *InterfaceValue) SetValue(x Value) { v.Set(x) }
+func (v *interfaceValue) SetValue(x Value) { v.Set(x) }
-// Method returns a FuncValue corresponding to v's i'th method.
-// The arguments to a Call on the returned FuncValue
-// should not include a receiver; the FuncValue will use v
+// Method returns a funcValue corresponding to v's i'th method.
+// The arguments to a Call on the returned funcValue
+// should not include a receiver; the funcValue will use v
// as the receiver.
-func (v *InterfaceValue) Method(i int) *FuncValue {
- t := v.Type().(*InterfaceType)
+func (v *interfaceValue) Method(i int) Value {
+ t := (*interfaceType)(unsafe.Pointer(v.Type().(*commonType)))
if t == nil || i < 0 || i >= len(t.methods) {
- return nil
+ panic("reflect: Method index out of range")
}
p := &t.methods[i]
// Function pointer is at p.perm in the table.
fn := tab.Fn[i]
- fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), 0}, first: data, isInterface: true}
- return fv
+ fv := &funcValue{value: value{toType(p.typ), addr(&fn), 0}, first: data, isInterface: true}
+ return Value{fv}
}
/*
* map
*/
-// A MapValue represents a map value.
-type MapValue struct {
+// A mapValue represents a map value.
+type mapValue struct {
value "map"
}
// IsNil returns whether v is a nil map value.
-func (v *MapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
+func (v *mapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Set assigns x to v.
// The new value x must have the same type as v.
-func (v *MapValue) Set(x *MapValue) {
+func (v *mapValue) Set(x *mapValue) {
if !v.CanSet() {
panic(cannotSet)
}
}
// Set sets v to the value x.
-func (v *MapValue) SetValue(x Value) {
- if x == nil {
- v.Set(nil)
- return
- }
- v.Set(x.(*MapValue))
+func (v *mapValue) SetValue(x Value) {
+ v.Set(x.panicIfNot(Map).(*mapValue))
}
// Get returns the uintptr value of v.
// It is mainly useful for printing.
-func (v *MapValue) Get() uintptr { return *(*uintptr)(v.addr) }
+func (v *mapValue) Get() uintptr { return *(*uintptr)(v.addr) }
// implemented in ../pkg/runtime/reflect.cgo
func mapaccess(m, key, val *byte) bool
// Elem returns the value associated with key in the map v.
// It returns nil if key is not found in the map.
-func (v *MapValue) Elem(key Value) Value {
- t := v.Type().(*MapType)
+func (v *mapValue) Elem(key Value) Value {
+ t := v.Type()
typesMustMatch(t.Key(), key.Type())
m := *(**byte)(v.addr)
if m == nil {
- return nil
+ return Value{}
}
- newval := MakeZero(t.Elem())
- if !mapaccess(m, (*byte)(key.getAddr()), (*byte)(newval.getAddr())) {
- return nil
+ newval := Zero(t.Elem())
+ if !mapaccess(m, (*byte)(key.internal().getAddr()), (*byte)(newval.internal().getAddr())) {
+ return Value{}
}
return newval
}
// SetElem sets the value associated with key in the map v to val.
// If val is nil, Put deletes the key from map.
-func (v *MapValue) SetElem(key, val Value) {
- t := v.Type().(*MapType)
+func (v *mapValue) SetElem(key, val Value) {
+ t := v.Type()
typesMustMatch(t.Key(), key.Type())
var vaddr *byte
- if val != nil {
+ if val.IsValid() {
typesMustMatch(t.Elem(), val.Type())
- vaddr = (*byte)(val.getAddr())
+ vaddr = (*byte)(val.internal().getAddr())
}
m := *(**byte)(v.addr)
- mapassign(m, (*byte)(key.getAddr()), vaddr)
+ mapassign(m, (*byte)(key.internal().getAddr()), vaddr)
}
// Len returns the number of keys in the map v.
-func (v *MapValue) Len() int {
+func (v *mapValue) Len() int {
m := *(**byte)(v.addr)
if m == nil {
return 0
// Keys returns a slice containing all the keys present in the map,
// in unspecified order.
-func (v *MapValue) Keys() []Value {
- tk := v.Type().(*MapType).Key()
+func (v *mapValue) Keys() []Value {
+ tk := v.Type().Key()
m := *(**byte)(v.addr)
mlen := int32(0)
if m != nil {
a := make([]Value, mlen)
var i int
for i = 0; i < len(a); i++ {
- k := MakeZero(tk)
- if !mapiterkey(it, (*byte)(k.getAddr())) {
+ k := Zero(tk)
+ if !mapiterkey(it, (*byte)(k.internal().getAddr())) {
break
}
a[i] = k
}
// MakeMap creates a new map of the specified type.
-func MakeMap(typ *MapType) *MapValue {
- v := MakeZero(typ).(*MapValue)
- *(**byte)(v.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ)))
+func MakeMap(typ Type) Value {
+ if typ.Kind() != Map {
+ panic("reflect: MakeMap of non-map type")
+ }
+ v := Zero(typ)
+ m := v.panicIfNot(Map).(*mapValue)
+ *(**byte)(m.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ.(*commonType))))
return v
}
* ptr
*/
-// A PtrValue represents a pointer.
-type PtrValue struct {
+// A ptrValue represents a pointer.
+type ptrValue struct {
value "ptr"
}
// IsNil returns whether v is a nil pointer.
-func (v *PtrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
+func (v *ptrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 }
// Get returns the uintptr value of v.
// It is mainly useful for printing.
-func (v *PtrValue) Get() uintptr { return *(*uintptr)(v.addr) }
+func (v *ptrValue) Get() uintptr { return *(*uintptr)(v.addr) }
// Set assigns x to v.
// The new value x must have the same type as v, and x.Elem().CanSet() must be true.
-func (v *PtrValue) Set(x *PtrValue) {
+func (v *ptrValue) Set(x *ptrValue) {
if x == nil {
*(**uintptr)(v.addr) = nil
return
}
// Set sets v to the value x.
-func (v *PtrValue) SetValue(x Value) {
- if x == nil {
- v.Set(nil)
- return
- }
- v.Set(x.(*PtrValue))
+func (v *ptrValue) SetValue(x Value) {
+ v.Set(x.panicIfNot(Ptr).(*ptrValue))
}
// PointTo changes v to point to x.
// If x is a nil Value, PointTo sets v to nil.
-func (v *PtrValue) PointTo(x Value) {
- if x == nil {
+func (v *ptrValue) PointTo(x Value) {
+ if !x.IsValid() {
*(**uintptr)(v.addr) = nil
return
}
if !x.CanSet() {
panic("cannot set x; cannot point to x")
}
- typesMustMatch(v.typ.(*PtrType).Elem(), x.Type())
+ typesMustMatch(v.typ.Elem(), x.Type())
// TODO: This will have to move into the runtime
// once the new gc goes in.
*(*uintptr)(v.addr) = x.UnsafeAddr()
// Elem returns the value that v points to.
// If v is a nil pointer, Elem returns a nil Value.
-func (v *PtrValue) Elem() Value {
+func (v *ptrValue) Elem() Value {
if v.IsNil() {
- return nil
+ return Value{}
}
flag := canAddr
if v.flag&canStore != 0 {
flag |= canSet | canStore
}
- return newValue(v.typ.(*PtrType).Elem(), *(*addr)(v.addr), flag)
+ return newValue(v.typ.Elem(), *(*addr)(v.addr), flag)
}
// Indirect returns the value that v points to.
// If v is a nil pointer, Indirect returns a nil Value.
// If v is not a pointer, Indirect returns v.
func Indirect(v Value) Value {
- if pv, ok := v.(*PtrValue); ok {
- return pv.Elem()
+ if v.Kind() != Ptr {
+ return v
}
- return v
+ return v.panicIfNot(Ptr).(*ptrValue).Elem()
}
/*
* struct
*/
-// A StructValue represents a struct value.
-type StructValue struct {
+// A structValue represents a struct value.
+type structValue struct {
value "struct"
}
// Set assigns x to v.
// The new value x must have the same type as v.
-func (v *StructValue) Set(x *StructValue) {
+func (v *structValue) Set(x *structValue) {
// TODO: This will have to move into the runtime
// once the gc goes in.
if !v.CanSet() {
}
// Set sets v to the value x.
-func (v *StructValue) SetValue(x Value) { v.Set(x.(*StructValue)) }
+func (v *structValue) SetValue(x Value) {
+ v.Set(x.panicIfNot(Struct).(*structValue))
+}
// Field returns the i'th field of the struct.
-func (v *StructValue) Field(i int) Value {
- t := v.typ.(*StructType)
+func (v *structValue) Field(i int) Value {
+ t := v.typ
if i < 0 || i >= t.NumField() {
- return nil
+ panic("reflect: Field index out of range")
}
f := t.Field(i)
flag := v.flag
}
// FieldByIndex returns the nested field corresponding to index.
-func (t *StructValue) FieldByIndex(index []int) (v Value) {
- v = t
+func (t *structValue) FieldByIndex(index []int) (v Value) {
+ v = Value{t}
for i, x := range index {
if i > 0 {
- if p, ok := v.(*PtrValue); ok {
- v = p.Elem()
+ if v.Kind() == Ptr {
+ v = v.Elem()
}
- if s, ok := v.(*StructValue); ok {
- t = s
- } else {
- v = nil
- return
+ if v.Kind() != Struct {
+ return Value{}
}
}
- v = t.Field(x)
+ v = v.Field(x)
}
return
}
// FieldByName returns the struct field with the given name.
// The result is nil if no field was found.
-func (t *StructValue) FieldByName(name string) Value {
- if f, ok := t.Type().(*StructType).FieldByName(name); ok {
+func (t *structValue) FieldByName(name string) Value {
+ if f, ok := t.Type().FieldByName(name); ok {
return t.FieldByIndex(f.Index)
}
- return nil
+ return Value{}
}
// FieldByNameFunc returns the struct field with a name that satisfies the
// match function.
// The result is nil if no field was found.
-func (t *StructValue) FieldByNameFunc(match func(string) bool) Value {
- if f, ok := t.Type().(*StructType).FieldByNameFunc(match); ok {
+func (t *structValue) FieldByNameFunc(match func(string) bool) Value {
+ if f, ok := t.Type().FieldByNameFunc(match); ok {
return t.FieldByIndex(f.Index)
}
- return nil
+ return Value{}
}
// NumField returns the number of fields in the struct.
-func (v *StructValue) NumField() int { return v.typ.(*StructType).NumField() }
+func (v *structValue) NumField() int { return v.typ.NumField() }
/*
* constructors
*/
// NewValue returns a new Value initialized to the concrete value
-// stored in the interface i. NewValue(nil) returns nil.
+// stored in the interface i. NewValue(nil) returns the zero Value.
func NewValue(i interface{}) Value {
if i == nil {
- return nil
+ return Value{}
}
- t, a := unsafe.Reflect(i)
- return newValue(toType(t), addr(a), canSet|canAddr|canStore)
+ _, a := unsafe.Reflect(i)
+ return newValue(Typeof(i), addr(a), canSet|canAddr|canStore)
}
func newValue(typ Type, addr addr, flag uint32) Value {
v := value{typ, addr, flag}
- switch typ.(type) {
- case *ArrayType:
- return &ArrayValue{v}
- case *BoolType:
- return &BoolValue{v}
- case *ChanType:
- return &ChanValue{v}
- case *FloatType:
- return &FloatValue{v}
- case *FuncType:
- return &FuncValue{value: v}
- case *ComplexType:
- return &ComplexValue{v}
- case *IntType:
- return &IntValue{v}
- case *InterfaceType:
- return &InterfaceValue{v}
- case *MapType:
- return &MapValue{v}
- case *PtrType:
- return &PtrValue{v}
- case *SliceType:
- return &SliceValue{v}
- case *StringType:
- return &StringValue{v}
- case *StructType:
- return &StructValue{v}
- case *UintType:
- return &UintValue{v}
- case *UnsafePointerType:
- return &UnsafePointerValue{v}
+ switch typ.Kind() {
+ case Array:
+ return Value{&arrayValue{v}}
+ case Bool:
+ return Value{&boolValue{v}}
+ case Chan:
+ return Value{&chanValue{v}}
+ case Float32, Float64:
+ return Value{&floatValue{v}}
+ case Func:
+ return Value{&funcValue{value: v}}
+ case Complex64, Complex128:
+ return Value{&complexValue{v}}
+ case Int, Int8, Int16, Int32, Int64:
+ return Value{&intValue{v}}
+ case Interface:
+ return Value{&interfaceValue{v}}
+ case Map:
+ return Value{&mapValue{v}}
+ case Ptr:
+ return Value{&ptrValue{v}}
+ case Slice:
+ return Value{&sliceValue{v}}
+ case String:
+ return Value{&stringValue{v}}
+ case Struct:
+ return Value{&structValue{v}}
+ case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr:
+ return Value{&uintValue{v}}
+ case UnsafePointer:
+ return Value{&unsafePointerValue{v}}
}
panic("newValue" + typ.String())
}
-// MakeZero returns a zero Value for the specified Type.
-func MakeZero(typ Type) Value {
+// Zero returns a Value representing a zero value for the specified type.
+// The result is different from the zero value of the Value struct,
+// which represents no value at all.
+// For example, Zero(Typeof(42)) returns a Value with Kind Int and value 0.
+func Zero(typ Type) Value {
if typ == nil {
- return nil
+ panic("reflect: Zero(nil)")
}
return newValue(typ, addr(unsafe.New(typ)), canSet|canAddr|canStore)
}