// which belongs to the open interval (lower, upper), where f is supposed
// to lie. It returns false whenever the result is unsure. The implementation
// uses the Grisu3 algorithm.
-func (f *extFloat) ShortestDecimal(d *decimal, lower, upper *extFloat) bool {
+func (f *extFloat) ShortestDecimal(d *decimalSlice, lower, upper *extFloat) bool {
if f.mant == 0 {
d.d[0] = '0'
d.nd = 1
}
if f.exp == 0 && *lower == *f && *lower == *upper {
// an exact integer.
- d.Assign(f.mant)
+ var buf [24]byte
+ n := len(buf) - 1
+ for v := f.mant; v > 0; {
+ v1 := v / 10
+ v -= 10 * v1
+ buf[n] = byte(v + '0')
+ n--
+ v = v1
+ }
+ nd := len(buf) - n - 1
+ for i := 0; i < nd; i++ {
+ d.d[i] = buf[n+1+i]
+ }
+ d.nd, d.dp = nd, nd
+ for d.nd > 0 && d.d[d.nd-1] == '0' {
+ d.nd--
+ }
+ if d.nd == 0 {
+ d.dp = 0
+ }
d.neg = f.neg
return true
}
// d = x-targetDiff*ε, without becoming smaller than x-maxDiff*ε.
// It assumes that a decimal digit is worth ulpDecimal*ε, and that
// all data is known with a error estimate of ulpBinary*ε.
-func adjustLastDigit(d *decimal, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
+func adjustLastDigit(d *decimalSlice, currentDiff, targetDiff, maxDiff, ulpDecimal, ulpBinary uint64) bool {
if ulpDecimal < 2*ulpBinary {
// Approximation is too wide.
return false
// Negative precision means "only as much as needed to be exact."
shortest := prec < 0
- d := new(decimal)
+ var digs decimalSlice
if shortest {
ok := false
if optimize {
// Try Grisu3 algorithm.
f := new(extFloat)
lower, upper := f.AssignComputeBounds(mant, exp, neg, flt)
- ok = f.ShortestDecimal(d, &lower, &upper)
+ var buf [32]byte
+ digs.d = buf[:]
+ ok = f.ShortestDecimal(&digs, &lower, &upper)
}
if !ok {
// Create exact decimal representation.
// The shift is exp - flt.mantbits because mant is a 1-bit integer
// followed by a flt.mantbits fraction, and we are treating it as
// a 1+flt.mantbits-bit integer.
+ d := new(decimal)
d.Assign(mant)
d.Shift(exp - int(flt.mantbits))
roundShortest(d, mant, exp, flt)
+ digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
}
// Precision for shortest representation mode.
if prec < 0 {
switch fmt {
case 'e', 'E':
- prec = d.nd - 1
+ prec = digs.nd - 1
case 'f':
- prec = max(d.nd-d.dp, 0)
+ prec = max(digs.nd-digs.dp, 0)
case 'g', 'G':
- prec = d.nd
+ prec = digs.nd
}
}
} else {
// Create exact decimal representation.
+ d := new(decimal)
d.Assign(mant)
d.Shift(exp - int(flt.mantbits))
// Round appropriately.
}
d.Round(prec)
}
+ digs = decimalSlice{d: d.d[:], nd: d.nd, dp: d.dp}
}
switch fmt {
case 'e', 'E':
- return fmtE(dst, neg, d, prec, fmt)
+ return fmtE(dst, neg, digs, prec, fmt)
case 'f':
- return fmtF(dst, neg, d, prec)
+ return fmtF(dst, neg, digs, prec)
case 'g', 'G':
// trailing fractional zeros in 'e' form will be trimmed.
eprec := prec
- if eprec > d.nd && d.nd >= d.dp {
- eprec = d.nd
+ if eprec > digs.nd && digs.nd >= digs.dp {
+ eprec = digs.nd
}
// %e is used if the exponent from the conversion
// is less than -4 or greater than or equal to the precision.
if shortest {
eprec = 6
}
- exp := d.dp - 1
+ exp := digs.dp - 1
if exp < -4 || exp >= eprec {
- if prec > d.nd {
- prec = d.nd
+ if prec > digs.nd {
+ prec = digs.nd
}
- return fmtE(dst, neg, d, prec-1, fmt+'e'-'g')
+ return fmtE(dst, neg, digs, prec-1, fmt+'e'-'g')
}
- if prec > d.dp {
- prec = d.nd
+ if prec > digs.dp {
+ prec = digs.nd
}
- return fmtF(dst, neg, d, max(prec-d.dp, 0))
+ return fmtF(dst, neg, digs, max(prec-digs.dp, 0))
}
// unknown format
}
}
+type decimalSlice struct {
+ d []byte
+ nd, dp int
+ neg bool
+}
+
// %e: -d.ddddde±dd
-func fmtE(dst []byte, neg bool, d *decimal, prec int, fmt byte) []byte {
+func fmtE(dst []byte, neg bool, d decimalSlice, prec int, fmt byte) []byte {
// sign
if neg {
dst = append(dst, '-')
}
// %f: -ddddddd.ddddd
-func fmtF(dst []byte, neg bool, d *decimal, prec int) []byte {
+func fmtF(dst []byte, neg bool, d decimalSlice, prec int) []byte {
// sign
if neg {
dst = append(dst, '-')