From: Russ Cox Date: Mon, 10 Oct 2016 20:18:43 +0000 (-0400) Subject: math/big: add (*Int).Sqrt X-Git-Tag: go1.8beta1~825 X-Git-Url: http://www.git.cypherpunks.su/?a=commitdiff_plain;h=9ee21f90d2594412dd60dd821831056db708fa53;p=gostls13.git math/big: add (*Int).Sqrt This is needed for some of the more complex primality tests (to filter out exact squares), and while the code is simple the boundary conditions are not obvious, so it seems worth having in the library. Change-Id: Ica994a6b6c1e412a6f6d9c3cf823f9b653c6bcbd Reviewed-on: https://go-review.googlesource.com/30706 Run-TryBot: Russ Cox Reviewed-by: Robert Griesemer --- diff --git a/src/math/big/int.go b/src/math/big/int.go index 51dc6f78ff..a2c1b580f5 100644 --- a/src/math/big/int.go +++ b/src/math/big/int.go @@ -924,3 +924,14 @@ func (z *Int) Not(x *Int) *Int { z.neg = true // z cannot be zero if x is positive return z } + +// Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z. +// It panics if x is negative. +func (z *Int) Sqrt(x *Int) *Int { + if x.neg { + panic("square root of negative number") + } + z.neg = false + z.abs = z.abs.sqrt(x.abs) + return z +} diff --git a/src/math/big/int_test.go b/src/math/big/int_test.go index 18f5be749d..b8e0778ca3 100644 --- a/src/math/big/int_test.go +++ b/src/math/big/int_test.go @@ -9,6 +9,7 @@ import ( "encoding/hex" "fmt" "math/rand" + "strings" "testing" "testing/quick" ) @@ -1453,3 +1454,44 @@ func TestIssue2607(t *testing.T) { n := NewInt(10) n.Rand(rand.New(rand.NewSource(9)), n) } + +func TestSqrt(t *testing.T) { + root := 0 + r := new(Int) + for i := 0; i < 10000; i++ { + if (root+1)*(root+1) <= i { + root++ + } + n := NewInt(int64(i)) + r.SetInt64(-2) + r.Sqrt(n) + if r.Cmp(NewInt(int64(root))) != 0 { + t.Errorf("Sqrt(%v) = %v, want %v", n, r, root) + } + } + + for i := 0; i < 1000; i += 10 { + n, _ := new(Int).SetString("1"+strings.Repeat("0", i), 10) + r := new(Int).Sqrt(n) + root, _ := new(Int).SetString("1"+strings.Repeat("0", i/2), 10) + if r.Cmp(root) != 0 { + t.Errorf("Sqrt(1e%d) = %v, want 1e%d", i, r, i/2) + } + } + + // Test aliasing. + r.SetInt64(100) + r.Sqrt(r) + if r.Int64() != 10 { + t.Errorf("Sqrt(100) = %v, want 10 (aliased output)", r.Int64()) + } +} + +func BenchmarkSqrt(b *testing.B) { + n, _ := new(Int).SetString("1"+strings.Repeat("0", 1001), 10) + b.ResetTimer() + t := new(Int) + for i := 0; i < b.N; i++ { + t.Sqrt(n) + } +} diff --git a/src/math/big/nat.go b/src/math/big/nat.go index 4a3b7ae33f..9b1a626c4c 100644 --- a/src/math/big/nat.go +++ b/src/math/big/nat.go @@ -1223,3 +1223,37 @@ func (z nat) setBytes(buf []byte) nat { return z.norm() } + +// sqrt sets z = ⌊√x⌋ +func (z nat) sqrt(x nat) nat { + if x.cmp(natOne) <= 0 { + return z.set(x) + } + if alias(z, x) { + z = nil + } + + // Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller. + // See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt). + // https://members.loria.fr/PZimmermann/mca/pub226.html + // If x is one less than a perfect square, the sequence oscillates between the correct z and z+1; + // otherwise it converges to the correct z and stays there. + var z1, z2 nat + z1 = z + z1 = z1.setUint64(1) + z1 = z1.shl(z1, uint(x.bitLen()/2+1)) // must be ≥ √x + for n := 0; ; n++ { + z2, _ = z2.div(nil, x, z1) + z2 = z2.add(z2, z1) + z2 = z2.shr(z2, 1) + if z2.cmp(z1) >= 0 { + // z1 is answer. + // Figure out whether z1 or z2 is currently aliased to z by looking at loop count. + if n&1 == 0 { + return z1 + } + return z.set(z1) + } + z1, z2 = z2, z1 + } +}